NAVAL POSTGRADUATE SCHOOL
‘Monterey, California

THESIS

FORMAL SPECIFICATION AND
ANALYSIS OF A WIRELESS
MEDIA ACCESS PROTOCOL
by

Martin Scott Almquist
September 1995

Thesis Advisor: - Gilbert Lundy

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

T T y——
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE

Master’s Thesis

T g T STt N~ T gy mn
3. REPORT TYPE AND DATES COVERED

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
colfection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorats for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

September 1995
4. TITLE AND SUBTITLE

Formal Specification and Analysis of a Wireless Media Access Protocol

5. FUNDING NUMBERS

[6. AUTHOR(S)
Almquist, Martin Scott

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Ty ———
11. SUPPLEMENTARY NOTES

of the Department of Defense or the United States Government.

he views expressed in this thesis are those of the author and do not reflect the official policy or position

I T T T T S T ———————————
12a. DISTRIBUTION/ AVAILABILITY STATEMENT . . T
Approved for public release; distribution is unlimited.

———————————
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

SIGCOMM Proceedings 94 Vol. 24 #4.

be left.

transitions between MACAW states, which were suggested by the analysis.

The problem addressed by this research is to formally specify and analyze a proposed wireless network media access
protocol. The protocol, named MACAW for Multiple Access Collision Avoidance Wireless, was described in ACM

The approach taken was to use the formal model Systems of Communicating Machines to develop a formal specification of
the protocol. An initial specification was derived directly from the original proposal in order to reveal any unresolved problems.
The formal specification was then refined to produce a more precise and unambiguous specification. The refined specification
was used to analyze the protocol using system state analysis for properties such as liveness and deadlock. Liveness is the
property of positive progression while deadlock is an undesirable property where a state is reached that cannot

The results are a specification of MACAW as originally proposed and a refined specification which provides an unambiguous
understanding of the protocol. The analysis determined that the protocol is free of deadlock. Also presented are three new

14. SUBJECT TERMS _]] o]
Formal Specification, Wireless Communications, Media Access

15. NUMBER OF PAGES
96

16. PRICE CODE

R
17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

T = T
18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

RO Uit — A —
19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

ii

Approved for public release; distribution is unlimited

FORMAL SPECIFICATION AND ANALYSIS
OF A WIRELESS MEDIA ACCESS PROTOCOL

Martin Scott Almquist
Major, United States Marine Corps
B.S., University of Arizona, 1981

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September1995

Author: W // 6'0%—' %}fwf

Martin Scott Almquist

7 Z/é |
Approved by: M% ol

Gilbert Lundngr

Ted Lewis,\éhairman,
Department of Computer Science

iii

v

ABSTRACT

The problem addressed by this research is to formally specify and analyze a proposed
wireless network media access protocol. The protocol, named MACAW for Multiple
Access Collision Avoidance Wireless, was described in ACM SIGCOMM Proceedings 94
Vol. 24 #4.

The approach taken was to use the formal model Systems of Communicating
Machines to develop a formal specification of the protocol. An initial specification was
derived directly from the original proposal in order to reveal any unresolved problems. The
formal specification was then refined to produce a more precise and unambiguous
specification. The refined specification was used to analyze the protocol using system state
analysis for properties such as liveness and deadlock. Liveness is the property of positive
progression while deadlock is an undesirable property where a state is reached that cannot
be left.

The results are a specification of MACAW as originally proposed and a refined
specification which provides an unambiguous understanding of the protocol. The analysis
determined that the protocol is free of deadlock. Also presented are three new transitions

between MACAW states, which were suggested by the analysis.

vi

IL

III.

IV.

TABLE OF CONTENTS

INTRODUCTION ..ottt eresesteeencssesesesestssesesesessssesessessseneseseases 1
A. WIRESS NETWORKINGccooviriemmirreninreriniereenessesssesesasssessesssesesessnsseses 2
B. FORMAL SPECIFICATIONccvimiiiririeeieieenanenseneramessonsseesesesessssessseseses 3
C. ANALYSIS ettt sttt ea e be sttt s et et se st s s 3
D. ORGANIZATION OF THIS THESISccoioiireeerrieenenteeete e seseessanes 4
WIRELESS NETWORKSoooiiiiiitiiiiieec sttt sttt st et et eseaes 5
Al GENERAL ...ttt et ee ettt sttt e st ebesenan 5
B. ISSUES IN WIRELESS NETWORKINGccocectrenirreemiiieeinrerenecnciesenenes 5
1. Wireless versus Wired NEtWorksccceeeevererrevenerenvennescnverereeneneenens 6
2. Multiaccess NEtWOTKSccceirieirieieieiiirieerentereeeinte e sees et ne 6
3. Multiple Access Protocolsccoceeeciroerircrnnenieenieiesrneceseseeneseeeseseennes 7
C. MAGCA ettt ettt et sn et st ra e e nen s st aseneas 10
1. Hidden and Exposed NOEScccocereieenieenenenieenieereeneeseensseanseneene 10
2. MAGCA ottt ettt sttt st sttt eb b 11
MACAW ..ttt ettt et e tsessssasa s e s s esasssse e s et et asesessnsesssasansasass 15
Al GENERAL ...ttt et e s se et s s e s e s e sess s an s s e snsnnas 15
B, MACAW FEATURES ..ottt et sesessasne e s e snsenens 15
L. MACAW DESCTIPLON ..evveueuiiereneninvereieierenenterenctsaeaeesessesescsessssssessans 15
2. Message Exchange Procedurecccoueeeeevevrenrencninreneencnienencseerenenns 16
3. Backoff AIZOTIthmccoceeiniiiiiiiierreiecesteeeere et s 19
4. Protocol Message CONLENLScccoeeeereereeeereereeerueeeessesensesnenessessenes 19
C. PHYSICAL LAYOUT OF MACAW IMPLEMENTATIONccceu.u... 19
1. Inner-Office LAN ..ottt svne e eease e sva s 19
2. PhySICAl LAYETcoovevireireiiirieenreienieieeeeteseetneessansesaesnesssasessasessens 20
FORMAL SPECIFICATIONcoociiietiieiiiireiernieeeeresenisesessessssesessssesessesnesasesas 23
A. FORMAL DESCRIPTIONccooeiiiientnieiinecneetnrerensssseesesseseassenssesenns 23
B. SYSTEMS OF COMMUNICATING MACHINEScccoooeniiiminenrriecinienene 23
C. SPECIFICATION OF MACAWocoieieieererrirnieiesesensesesessssesessssssesesssesannes 24
1. Local and Shared Variablescoceeevvinerenieieninnnieneeienseesiesesvenaenns 25
2. Predicate action table and State diagramccceeeveeerienerrenrenerennene 27
3. Ambiguities encountered in specifying MACAWccccovvvvevevrennnnnee 28
D. REVISED MACAW SPECIFICATIONccoccooimriireeenreeniereereieeesnesennas 30
1. Refinements in MACAW_2 ...t sveesses st s sessseneas 33
ANALYSIS ottt sttt tss e sesssast st et et ssasenssssasssasasassase st resesasesese 35
Al GENERAL ..ottt ettt eses e s st sss s sessssnssasessassesessesessasessnnes 35
B. ANALYSIS PROGRAMcociviiiirneeeseceseetsenstesesessssssssassssansssssseseans 35
1. User Written Program Unitscccocceeeuerenecnenineeerinienieenieseseesevnnnenns 36
2. INPUE FALE .ottt 37
C. ENCODING MACAW FOR ANALYSIScooovoeeeteeeetereeereeereeereneeevevevenns 38
1. Number of Machines and Variablescccoevrverirecrecreeneereennienene. 38
2. Timer Settings and Backoffccooceoeeiiiviiieiceceececvee 39

vil

3. Transition NAMINEGcccveceereentinrienrenreenicereeesereecesetesreessesseceseessnnes 40

4. QUIET StALE ..ecoueererrereereeireteeeeieesteeeeeesseesessteseseensessnessesaecressesssesnne 40

D. RESULTS OF ANALYSIS ...oiieritiiictnrtenienrenteiteneeesecsessnesseesasssecsseses 40

1. 2 MACKINES ...ooveiieiiiiiiiieeitirniee e ceeeteessrte et eete e st e et assmrecnseessesssesaes 40

2. B MACKINES ...veireeieieeceeiereee ettt srte s ssaesstess e canesbreesassae 41

3. 4 MACHINES ..cvveevenreereeneenrineeeerieseenesaensessesstesetesnnessessacssessessssessaossases 42

E. IMPROVEMENTS SUGGESTED BY ANALYSIS ...ccoeiiiiieerveereneenneens 42

1. Receive DATA from WEDS Statecoooeveieviiiieiiineecereeeeee e 43

2. Loop Transition in WEDS Stateccocoiiviiiniioninnciciiniccciienneens 44

3. Loop Transition in WECTS Stateccccceceeveviienerneenrennnereenieseeseenneees 45

VI. CONCLUSIONS ...ooitioiiitenientereeueeeentesessessessesstessessessasssessessssassssssesssssssessessens 47
A. FORMAL SPECIFICATIONccceotiiirienterteineriensenssessseensesnsessesssessesssesuesns 48

B, ANALYSIS ettt sttt et sve st esse e e et e ae s et as st e e emneenason 48

C. IMPROVEMENTS TO MACAW ...oiieiirenececte et cveesseeseesaessesenne 49

D. SUGGESTIONS FOR FURTHER WORKccocecermiienieniireeeeienrieneeeeenn 49
LIST OF REFERENCESoootiiiritistetecieiesteesecrneeteseessessessssesssessessssssesssesseessassnaens 51
APPENDIXoociiititiiiineirinterieestieieesessesteesessassestensessssassesstesessassessessesssessassessesssssasssssassesas 53
INITIAL DISTRIBUTION LIST ..coooiiieiiieiiieitetestereeteeeeesree e svessassasseeasssasseessesnenes 87

viii

I. INTRODUCTION

Wirelgss networking has experienced rapid growth in recent years as more and more
applications are found that can benefit from wireless networks. Applications from inner-
office LANs to WANSs exist as well as private, commercial and military uses. One concern
shared by all wireless networks is media access control (MAC). MAC protocols form a
layer of any network model and are particularly important for wireless networking since
the media, be it radio, light, or sound must be shared amongst the devices in the network.
A good MAC protocol will resolve media contention both in the interests of fairness and
network throughput.

This thesis presents a formal specification and analysis of a wireless Medium Access
Control (MAC) protocol. The formal specification was developed using the Systems of
Communicating Machines model. The specification and analysis led to several suggestions
for improvement in the protocol. The wireless MAC protocol was developed at Xerox’s
Palo Alto Research Center (PARC) by a team of designers: Alan Demers, Scott Shenker,
Lixia Zhang and Vaduvur Bhaghavan [1]. The protocol, termed MACAW, for Multiple
Access Collision Avoidance Wireless, was developed from the Multiple Access Collision
Avoidance (MACA) protocol proposed by Karn for use in packet radio networks [2].
MACA and MACAW both were designed the wireless network environment. MACA was
proposed as a media access protocol for packet radio that would address the hidden énd
exposed node problems common in wireless networks. It would not use the Carrier Sense
Multiple Access approach to determine when the media was clear for transmissions but
would explicitly query the intended recipient. The query would be in the form of a Request
to Send (RTS) message addressed to the intended recipient. If the intended recipient was
able to receive the traffic it would respond with a Clear to Send (CTS) message. After
receiving the CTS message the original machine would then transmit its data. [3] and [4]
argue for a RTS-CTS-DATA message exchange procedure for wireless

applications. MACAW was developed specifically for use in a single channel wireless LAN

network structure being developed at Xerox Corporation’s Palo Alto Research Center
Computer Science Laboratory. Building on the MACA, MACAW uses a similar message
exchange but adds three new messages. The new messages are DATA SEND (DS),
REQUEST to send REQUEST TO SEND (RRTS), and ACKNOWLEDGEMENT
(ACK).The full MACAW message exchange procedure is RTS-CTS-DS-DATA-ACK.
The key to understanding the functioning of MACAW lies in understanding this message

exchange procedure.

A. WIRESS NETWORKING

Recent years have seen a proliferation in wireless networking and mobile computing.
Wireless digital communication is seen as a key enabling technology for mobile computing
since it offers an escape from the tyranny of cables and wires. However, wireless
communication is not a panacea to all communication needs, it has restrictions in contrast
to conventional hard wired networks while offering several advantages over traditional
“wired” communications. Advantages of wireless networks include: lessened requirements
for supporting infrastructure, quicker network installation, and a more flexible network
architecture. Among the restrictions or limitations of wireless networks are: problems
associated with transmission range, local congestion, and interference that comes with
sharing the same medium amongst many machines.

Wireless and wired networks will play complimentary roles: wireless networks will
extend connectivity to mobile and remote users as well as users in dynamic networks
wherein users enter and leave the network on an random basis. Wired networks will
continue to move the bulk of data and provide “backbone” connectivity between groups of
wireless users and the rest of the network. In this scenario wireless LANs will play a major
role in giving groups of users mobility within a “local area” e.g. an office, warehouse, or
some other relatively limited area.

Military applications of wireless networking abound. Wireless LANs are envisioned

to provide ground forces with tactical data communications for command posts and small

unit communications [6]. Wireless Wide Area Networks (WANSs) also find applications
ranging from satellite communications to tactical communications uses among ground

units.

B. FORMAL SPECIFICATION

MACAW is formally specified and analyzed using a model called Systems of
Communicating Machines [6]. This model has been used to analyze several
communications protocols e.g. FDDI, CSMA/CD, etc. The Systems of Communicating
Machines (SCM) model is used to assist in the describing and analyzing communications
protocols. Each machine in an SCM model is defined as a finite state machine with
variables. Communication between machines is done through the use of global or shared
variables. Local variables are used to maintain the state information for each machine. In
general, the goal of a formal specification is to analyze the protocol for ‘liveness’ properties
which is defined as the ability to make positive progress. An additional benefit is gained

from the formal specification in terms of identifying any ambiguities in the protocol.

C. ANALYSIS

Once the formal specification has been developed the protocol can be analyzed. Global
state and system state reachability analysis are methods used to analyze communications
protocols. Global reachability is commonly used in conjunction with the Communicating
Finite State Machine (CFSM) model. Global reachability suffers from a combinatorial
explosion of states as the number of machines grows. System reachability analysis is
normally used with the SCM model. It does not suffer the combinatorial explosion of
numbers of states that the global analysis does and improves on some other aspects of the
giobal reachability analysis method. Even with system state reachability analysis the
number of possible system states can grow unwieldy for manual analysis. Consequently, it
is useful to have an automated capability to conduct either a system or global state
reachability analysis.The analysis in Chapter V is based on a computer program that does

the analysis.

D. ORGANIZATION OF THIS THESIS

This thesis is organized in the following manner: Chapter I is an introduction to the
thesis and briefly outlines the topic and procedure. Chapter II discusses wireless networks
in general and the particular aspects of media access that make wireless networks
fundamentally different from wired networks in this respect. It provides a motivation for
the importance of MAC protocols and their formal specification. MACA, the conceptual
ancestor of MACAW is presented along with a discussion of the hidden and exposed node
problems that led to the formulation of MACA and in turn MACAW.Chapter III describes
the MACAW protocol and the implementation details of the PARC LAN. Chapter IV
contains the formal specification of MACAW. Two specifications are presented, the first
1s an initial specification based on the material in [1], and the second is a refined
specification resolving the ambiguities discovered in developing the initial specification.
Chapter V contains the analysis of MACAW based on the formal specification. The results
of the analysis of the protocol and how the formal specification was translated into analysis
code are presented. Several different configurations were analyzed starting with a simple
two machine transmitter and receiver and ending with 4 machines modeling the exposed
and hidden node performance of the protocol. Also presented in Chapter V are several

improvements to the protocol that were recognized during the analysis.

II. WIRELESS NETWORKS

A. GENERAL

This chapter introduces some of the relevant issues in wireless networking. The need
for multiple access to the media in a wireless network is explained as are some general
features of wireless versus ‘wired” communications. Several multiple access protocols are
briefly discussed along with some of their advantages and disadvantages. Finally, MACA,
the ancéstor of MACAW is outlined. In the context of MACA the wireless problem of
hidden and exposed nodes is presented.

Superficially wireless networking is much the same as regular networks. Nodes in the
network exchange information via links between nodes. Both kinds of networks can be
modeled as graphs where each machine or station is represented as a node in the graph and
its links with other nodes as edges between the respective nodes. Issues such as congestion,
message queueing, access control, are common to both. In many cases wireless networks
are extensions of regular networks thereby providing mobility to the user.

In general, wireless communications wiil have lower data transmission rates and will
be more susceptible to interference than standard networks. The lower transmission rates
stem from two factors: first the theoretical data rates for radio frequency vary with
frequency but even in the Gigahertz radio frequency range maximum data rates only
approach that of a typical Ethernet e.g. 10 Megabits per second (Mbps). The second reason
for lower throughput in wireless networks is the higher noise and interference found in

wireless media particularly radio media that lead to higher error rates and consequently

more time spent retransmitting data.

B. ISSUES IN WIRELESS NETWORKING

Unlike hard wired networks where link-to-link communication is relatively free from
concerns such as transmit power, signal propagation, and link distance, wireless

networking must pay special attention to these needs in order to communicate successfully.

Wireless communications between various machines will require a mutually agreed upon
sharing of the radio frequency spectrum. Various schemes have been proposed to share the
medium between multiple machines. These include Carrier Sensing Multiple Access
(CSMA), CSMA/ Collision Detection (CSMA/CD), Time Division Multiple Access
(TDMA), Frequency Division Multiple Access (FDMA), and various Code Division
Mulitiple Access (CDMA) techniques also known as Spread Spectrum. The goal of these
methods is to allow multiple devices to access and use the media in some sort of disciplined
way rather than every device transmitting whenever it has some data to transmit.

Transmitting without regard to other traffic inevitably leads to collision, delays and

congestion.

1. Wireless versus Wired Networks

In contrast to hardwired networks where the physical link between two nodes can be
constructed in such a way so as to allow only those two nodes and no others access to the
link, wireless links share no such useful characteristics. In their media access
characteristics, wireless networks of all types are similar to LANs in that they share the
same media and hence must use the media with a minimum of interference with other nodes
if useful work is to be done. Furthermore, factors that do not impact the conventional
network such as terrain, locations, user mobility all have an effect on the wireless network.
As result of these factors a wide variety of network configurations are possible and these
configurations will change randomly as network stations move, background noise changes,
etc. Figure 1 depicts a network where one station (node 1) can hear node 2’s transmissions
and node 2 can hear node 1. Node 4 can hear node 1 but node 1 cannot hear transmissions
from 4. Node 3 can neither hear nor be heard by any of the other nodes. Contrast this with

a typical hardwired Ethernet where every network station can hear every other station.

2. Multiaccess Networks

A communications network can be thought of as a collection of nodes with arcs

between the nodes representing the communications link in a manner similar to Figure 1.

®
©

Figure 1: Wireless Configurations

This link might physically consist of wire, co-axial cable or fiber optic cable. Each link in
this network carries a signal that is a combination of the transmitted signal and whatever
ambient noise exists on the link. In networks where multiple devices share the same media
(typically satellite communications or local area networks e.g. ethernet, token ring or token
bus) the received signal at any station is the sum of all the transmitted signals and the
ambient noise level. Various methods, known as protocols, have been suggested to resolve
the problems of sharing the same media between different stations. Because LANSs by their
very nature share the media, early wireless networks used media access schemes similar to
those employed by LANs. The next section briefly describes some of the more common

multiple access protocols beginning with probably the most common: CSMA.
3. Multiple Access Protocols

a. CSMA and CSMA/CD

A station using Carrier Sense Multiple Access (CSMA) first listens to the media to
determine if another transmission is in progress. If a transmission is in progress the station
waits. If no transmission is in progress, the station is free to transmit its own messages. The
Collision Detection part of CSMA/CD works as follows: upon transmitting a message each
station monitors the frequency to detect any other signals. By comparing the difference
between what it knows the message to be with what is sensed on the frequency (medium)

it is able to detect collisions. A problem that arises with CSMA and CSMA/CD is that the

machine only detects interference at its site. It has no Way of knowing whether the message
at the intended target site is going to be interfered with. In order to detect problems at the
receiver the sending machine waits some predefined period of time to receive an
acknowledgment from the target machine. If an acknowledgment is not received then the
machine retransmits the message. This sequence is the same whether the target machine is
off the air, busy receiving a message from a third machine, or transmitting a message of its
own. It should also be noted that CSMA and CSMA/CD require specialized hardware to
detect the presence of a carrier. This is one feature MACAW does not require e.g.

specialized carrier sense hardware.

b. TDMA

Time Division Multiple Access varies from CSMA in that each station is assigned
a period of time, known as a “a slot” in which to transmit any information it has. The slot
is generally assigned to an individual station by a master or base station which is
responsible for distributing timing information to network stations. Slotted Aloha used this
type of approach to increase bandwidth usage over the original Aloha protocol. Since
timing information must be distributed, the protocol is essentially a centralized protocol
depending on the central station for the timing information. Without a centralized source
of timing information each station would drift off its true slot (due to small differences in
computer clock time) and eventually begin interfering with other stations. Normally this
central source is a master station in the network that uses its time as the global time for the
entire network. Outside sources of time information are available such as the Global
Positioning System but these sources introduce another system to the network and remain
centralized in nature. A possible inefficiency exists in the case where a station has nothing
to transmit during its slot but no way of giving up its slot to another station. Reservation
schemes have been proposed e.g. the DQDB protocol that attempt to over come this by
reserving slots with the master station. Any protocol depending on centralized information

is vulnerable to single point failure and moreover almost precludes master station mobility

since the master station usually is positioned to give the maximum possible
communications span. However, some exceptions to master station mobility do exist, one
is the U.S. Navy’s Naval Tactical Data System (NTDS). It uses a master station that queries

other stations for traffic.

c¢. FDMA

Frequency Division Multiple Access allows multiple stations to be on the air at the
some time by dividing the available frequency spectrum between stations. In this it is
somewhat similar to frequency multiplexing wherein one station transmits several different
communications threads (voice conversations, data, or video) by dividing the threads
among the frequency bandwidth it has available. In terms of mobility and adaptability
FDMA uses a prearranged division of frequencies and is not designed for dynamic
adaptation to new network topologies. A version of FDMA that lends more mobility to the
application is one wherein a master station dynamically assigns frequencies to other
stations within its transmission range (known as a cell). This approach provides mobility to
the user stations but is still vulnerable to single point failure at the master station. This

particular type of FDMA is in fact the scheme applied in cellular telephone networks.

d. CDMA (Spread Spectrum)

Code Division Multiple Access, commonly known as Spread spectrum, “spreads”
the signal orthogonally throughout the usable spectrum between users so that they may use
the same spectrum simultaneously without interference. Spread Spectrum communications
have received much attention of late in wireless communications circles since it has many
characteristics valuable for communicating in the type of electronic environment inherent
to mobile communications. It is relatively resistant to jamming or interference, and allows
frequency reuse by simply assigning a different spreading code. However, it also must
either preassign codes to using stations or a master station must assign the spreading codes
to stations as they enter the network. In the case of preassigned codes the network is no

longer able to accept new stations or in the case of a master station assigning codes the

network becomes vulnerable to single point failure at the master station. Another factor of
note is that stations with different spreading codes cannot communicate directly with each
other. Either they must somehow exchange spreading codes and use a single code to

communicate or communicate through a third station.

C. MACA

Karn first proposed MACA for use in packet radio networks [2]. MACA uses a RTS-
CTS-DATA packet exchange and binary exponential backoff for media access resolution

after a collision has occurred. Table 1 depicts the message types used in MACA.Karn

Table 1:

Name Meaning
RTS B Request to Send
CTS Clear to Send

DATA Data message

observed that the CSMA approach in packet radio networks suffered from two problems:

hidden nodes and exposed nodes.

1. Hidden and Exposed Nodes

According to Karn [2] an inherent problem with wireless networks is what is known
as hidden and exposed nodes. A hidden node is a situation where a node (3)is ‘hidden’ from
a node(1) because node 1 cannot hear node 3’s transmissions. An exposed node is a related
situation in which a node (2) is exposed to node 1’s transmissions (node 1’s transmissions
destructively interfere with node 2’s reception) when node 2 is attempting to receive a
transmission from node 3. Figure 2 depicts both situations. Node 1 is shown transmitting
and consequently interfering with node 2’s reception of 3’s transmission to 2. Note that
since node 3 is hidden from node 1, Carrier Sensing will not avail node 1 of any useful

information when it begins to transmit. This is because Carrier Sense only provides

10

information about the media at the node doing the sensing. It does not provide any
information about the media at other nodes. Furthermore using a Carrier Sense approach
does not give node 2 any ability to inform node 1 that it is receiving a transmission from 3.

It was from reasoning about this problem that Karn developed the motivation for MACA.

@ —O

Figure 2: Hidden and Exposed Nodes

2. MACA

From the hidden and exposed node problem Karn reasoned that if a node could inform
other stations within its transmission range when it was either about to transmit or receive
that much of the problem stemming from hidden and exposed nodes would be alleviated.
His protocol, MACA, uses a RTS-CTS-DATA message exchange procedure. MACA uses
a backoff algorithm known as Binary Exponential Backoff. MACA works in the following
way. A station (1) wishing to transmit a message to another station (2) first transmits a RTS
message to 2. The RTS message informs 2 that 1 has a DATA message for 2.Upon
receiving the RTS message station 2 immediately sends a CTS message back to 1. The CTS
message informs 1 that it is all right to send the DATA message. Any other station
overhearing either the RTS or CTS message will defer its transmissions for an amount of
time sufficient for the DATA message to be passed from 1 to 2. The deferral time is
determined from a field in the RTS and CTS message that contain the length of the DATA
message. Figure 3 depicts a state diagram for two stations using MACA. It represents a one

way data transfer from station 1 to 2.

11

station 1 station 2

send RTS receive RTS
receive CTS send CTS
send DATA receive DATA

Figure 3: MACA State Diagram

By transmitting the RTS message, station 1 informs all nodes within reception range
that it is about to transmit data to 2. Thus all the nodes receiving this defer and the exposed
node problem is resolved. The CTS message similarly resolves the hidden node problem
by informing all nodes within reception range of 2 that it is about to receive a message from
1. Other nodes hearing the CTS message defer until the DATA message is received.
Therefore 2 is not subject to destructive interference from another node’s transmission
while receiving node 1’s DATA message.

Before sending an RTS message a station will wait for a random amount of time. This
time is determined by randomly choosing a number between 1 and the backoff counter
value. This number is then multiplied by the slot length where slot length is the length of
time it takes to transmit a RTS or CTS message (both are the same length). Normally, the
only collisions in MACA will be collisions between RTS messages. Since an RTS message
will be a fraction of the size of a DATA message, less time is spent in collisions than if the
protocol simply transmitted the DATA message without the RTS or CTS messages.
Collisions with CTS messages will not normally take place since the CTS message is sent

immediately upon receipt of a RTS message. To collide with a CTS message a third station

12

would have to finish its wait period (the period befofe transmitting a RTS message) at the
same time that the CTS message was sent. This also implies that the third station did not
receive the RTS message. In the unlikely event that a collision does occur the subsequent
DATA message would also be lost and the sending station would eventually start the
process over again.

Note that it is possible for collisions to happen with other messages if either the RTS
or CTS messages are not received by all the stations that can interfere with the transmission
of the DATA message. This might take place for instance if intermittent noise is present
that would prevent reception of the RTS or CTS by a node other than 1 or 2. Usually,
assuming symmetry of reception and transmission would preclude this circumstance.
However, given the nature of wireless communications, assuming symmetry between
transmitter and receiver only applies in noise-free situations. Noise-free environments will
not normally be found in the type of operating environment envisioned for mobile
computing. As a result it is important that media access protocols work in noisy

environments as well as the simpler situation of noise-free.

13

14

III. MACAW

A. GENERAL

This chapter provides a brief discussion of the significant aspects of MACAW taken
from [1]. MACAW was developed by a team at Xerox Corporations’s Palo Alto Research
Center (PARC). The team’s work is based on a single channel radio LAN under
development at Xerox PARC. Their analysis of media access protocols led them to propose
a new protocol termed MACAW. MACAW improves on the media access methods of its
ancestor, MACA, and uses a significantly different backoff algorithm for collision
resolution. The improvements hope to achieve greater efficiency and better use of location

dependent congestion knowledge.

B. MACAW FEATURES

1. MACAW Description

MACAW as presented in [1] is composed of eight states and six different messages.
The eight states are IDLE, CONTEND, Wait for Clear to Send (WFCTS), Wait for
Acknowledgment (WFACK), Wait for Data Send (WFDS), Wait for Data (WFDATA),
QUIET, and Wait for Contend (WFCONTEND). The messages are: RTS, CTS, DS,
DATA, ACK, and RRTS. All messages but the DATA message are 30 bytes long. The
DATA message is 512 bytes long. The transmission time of the 30 byte message packet is
the “slot” time used for setting the random timer through which media access is scheduled.
The advantage gained in using so many control messages is the relative size of the data
message and control messages e.g. 512 bytes versus 30 bytes. Also while not completely
clear in [1] it seems that a machine may transmit multiple DATA messages for every RTS-

CTS exchange. Otherwise the utility of including a DATA size parameter in the RTS, CTS

15

and DS messages seems pointless. Table 2 presents the MACAW message types for ease

of reference.
Message Meaning length
RTS Request to Send 30 bytes
CTS Clear to Send 30 bytes
DS Data Send 30 bytes
DATA Data message 512 bytes
ACK Acknowledgement 30 bytes
RRTS Request to send an RTS 30 bytes

Table 2: MACAW Message Types

2. Message Exchange Procedure

MACAW uses a RTS-CTS-DS-DATA-ACK message exchange procedure. An RRTS
message is provided to re-initiate communication when machine 1 receives a RTS message
while in the QUIET state from machine 2. In order to describe the message exchange
procedure the following is an example procedure involving four machines. Machine 1 has
data to send to machine 2. Machine 3 and machine 4 are not directly involved in the
procedure but are included to demonstrate how the transitions to the QUIET and
WFCONTEND states take place and the use of the RRTS message. Figure 5 in Chapter IV

graphically depicts the state diagram used in the following example.

a. Machine 1

When machine 1 is in the IDLE state and has a message for machine 2 it
transitions to the CONTEND state and sets a random timer an integer number of slot times
between 1 and BO where BO is the value of the Backoff Counter. When the timer expires
machine 1 transmits a RTS message and set a timer sufficient for machine 2 to respond with

a CTS. It then transitions to the WFCTS state.

16

When machine 1 receives the CTS from machine 2 it transmits back-to-back a
DS and DATA message. It sets a timer sufficient to receive an ACK from machine 2. It then
transitions into the WFACK state. If instead machine 1 receives an ACK from machine 2,
it will return to the IDLE state and clear message from its out buffer. Receiving an ACK
message in the WFCTS state will happen if machine 1 had previously transmitted the
DATA message to machine 2 but had not received the ACK message even though machine
2 had successfully received the DATA message.

Upon receiving the ACK message from machine 2 while in the WFACK state,
machine 1 clears its output buffer of the related data message and transitions to the IDLE
state.

If machine 1 does not receive the appropriate message from machine 2 in either
the WECTS or WFACK state its timer will eventually expire. When the timer expires in
either state machine 1 returns to the IDLE state and begins the procedure anew by setting
the random timer and transitions to the CONTEND state.

If machine 1 receives a RTS while it is in the CONTEND state it transmits a CTS
message to the originator of the RTS and transitions to the WEDS state. At the same time

it sets a timer sufficient to allow receipt of the DS message.

b. Machine2

When machine 2 receives the RTS from machine 1 it transmits a CTS message,
sets a timer sufficient for the DS message from machine 1 to be received and transitions
into the WFDS state. If machine 2 has received machine 1’s message in an earlier exchange
it transmits an ACK.

From the WFDS state if machine 2 receives a DS message from machine 1 it sets
a timer sufficient to receive the DATA message and transitions to the WFDATA state.

When machine 2 receives the DATA message it transmits an ACK message and

transitions to the IDLE state.

17

If machine 2 does not receive the appropriate message from machine 1 while it
(machine 2) is in the WFDS or WFDATA its timer expires and transitions machine 2 back

to the IDLE state where it will wait for machine 1 to restart the communication.

¢. Machine3

When machine 3 receives a message not addressed to itself it transitions to the
QUIET state. It can do this from any of the other 7 states. When it transitions to the Quiet
state it sets a timer that determines how long machine 3 remains in the QUIET state.The
value of the timer varies depending on which type of message machine 3 received. If
machine 3 received the RTS from machine 1 to machine 2 its timer is set to allow for the
CTS message to be received by machine 1. If machine 3 received the CTS from machine 2
it sets it timer to allow the DS and DATA message to be received by machine 2. Finally, if
it received the DS message from machine 1 it sets the timer to allow the DATA and ACK
messages to be exchanged. When the timer expires in the QUIET state machine 3
transitions back to the IDLE state.

If machine 3 receives an RTS while it is in the QUIET state it transitions to the
WFCONTEND state. When the timer set in the transition to the QUIET state expires in the
WFCONTEND state machine 3 sets a random timer between 1 and BO slot times long and
transitions to the CONTEND state. When the random timer expires in the contend state

machine 3 will transmit a RRTS message to machine 4 and transition to the IDLE state.

d. Machine 4

If machine 4 transmits a RTS message to machine 3 while machine 3 is in the
QUIET state, machine 4 will timeout from the WECTS state and return the IDLE state and
then reenter the CONTEND state as it still has data for machine 3. If while machine 4 is in
the IDLE state it receives machine 3’s RRTS message it transmits a RTS message to

machine 3, sets a timer sufficient to receive machine 3’s CTS and transitions to the WEFCTS

state.

18

3. Backoff Algorithm

MACAW uses a different backoff algorithm than the Binary Exponential Backoff of
MACA as it was felt by MACAW’s developers that BEB oscillated too rapidly. Instead the
developers determined to increase the value of the backoff counter by a multiplicative
factor of 1.5 for every collision and decrease it by 1 for every success. The term coined for

this backoff algorithm was Multiplicative Increase and Linear Decrease (MILD).

4. Protocol Message Contents
Message types RTS, CTS, DS, ACK and RRTS are all 30 bytes long. Pertinent data

carried in these messages are Destination Address (DA), Source Address (SA), message
type (RTS, CTS, etc.), Exchange Sequence Number (ESN), length of DATA, local backoff,
and remote backoff. The ESN is used by machines to keep track of messages it receives
from other machines. Two ESNs are maintained per other machine, one for messages going
to the other machine and one for messages coming from the machine. When a new
transmission from machine 1 to machine 2 is initiated machine 1 increments the value of
the outgoing ESN. When machine 2 receives the RTS if the ESN has not been incremented
it transmits an ACK message otherwise it transmits a CTS. The local backoff and remote
backoff fields are included to distribute deferral information. Each machine maintains a
local and remote backoff value for each machine it is communicating with. The remote
backoff is the backoff value of the remote station (machine 2) as estimated by machine 1.
The local backoff is the value of the backoff of maintaining station (machine 1) as

estimated by the remote station (machine 2).

C. PHYSICAL LAYOUT OF MACAW IMPLEMENTATION

1. Inner-Office LAN

MACAW is implemented on a single channel radio LAN at Xerox PARC. The goal
of implementing MACAW was to develop a media access protocol for use in PARC’s

wireless infrastructure and explore basic performance and design issues regarding wireless

19

media access protocols. The MACAW LAN provides connectivity in an inter-office
setting. Communication takes place between ‘base stations’ and ‘pads’. The base stations
are installed in the office ceiling and are connected to each other via a conventional
Ethernet. Pads are custom built portable computing devices that connect to base stations via
radio communications. One base station may have several pads with which it
communicates while a pad will only communicate with a single base station. Unlike a fully
functional LAN, there is no pad to pad communication in the PARC implementation. Pads
may move from ‘cell’ to ‘cell’, where a ‘cell’ is the communication range of a given base

station.

2. Physical Layer

The Xerox PARC wireless LAN is built on a physical layer that functions in the 3 to 4
megahertz frequency range and utilizes PARC’s ‘near field’ radio technology. The low
frequency eliminates multi-path effects frequently found in a cluttered indoor
environment. There is a single 256 kilobyte per second channel that all devices share and
all devices transmit at the same power. An apparent advantage of using ‘near field’
technology is that the signal strength decays very rapidly and limits the transmission range
to about 3 meters. This combination produces a cell with very sharply defined boundaries
and about 6 meters in diameter. By strategically placing the base stations, inter-cell
interference is minimized. Figure 4 shows a schematic diagram of a MACAW LAN.

An assumption made by the developers regarding the radio technology is that all
communication is symmetric, that is that if machine 1 can hear machine 2 then machine 2
can hear machinel. Most of their testing and simulation was done in a noise-free

environment. In Chapter V this assumption is ignored in developing the analysis of
MACAW.

20

hard-wired Ethernet backbone

ceiling

/

stations
2 meters

pads pad

' floor

Figure 4: Schematic of a MACAW LAN

21

IV. FORMAL SPECIFICATION

A. FORMAL DESCRIPTION

Formal description techniques are used to develop formal specifications of
communications protocols. Formal description results in a precise, unambiguous
description of the protocol in the form of a specification. Several different models have
been proposed for use in formal description of protocols, among them Communicating
Finite State Machines and Petri Nets. In this thesis the formal model used is known as
Systems of Communicating Machines (SCM) [6]. The Systems of Communicating
Machines model was designed to formally describe and define network protocols. As a
result of its formality, the SCM model also contributes to a precise, unambiguous
understanding of the protocols behavior and lends itself to automated analysis of the
protocol. The next section briefly describes the paradigm of Systems of Communicating
Machines. Section C develops an initial specification of MACAW. This initial
specification was developed to provide a general understanding of the protocol as described
in [1]. The rigor of a formal specification revealed various ambiguities and contradictions.
No attempt was made to correct these problems in the initial specification as it was desired
to point out the problems revealed using the formal model rather than attempting to
textually describe problems with the original work. Section D develops a more precise and
comprehensive specification that resolves the ambiguities and contradictions revealed in

developing the specification in Section C.

B. SYSTEMS OF COMMUNICATING MACHINES

The Systems of Communicating Machines model is briefly described in this section.

More details can be found in [6].

A system of communicating machines is represented as an ordered pair C = (M,V),

where M = {m;, my,...m,)} is a finite set of machines and V={v;,v,,...v,,} is a finite set of

23

shared variables with two subsets R; and W; for each machine. Subset R; is the set of read
access variables for machine m;. Subset W is the set of write access variables for m;.

Each machine is defined by a tuple m; (S;,sy, L;, N;, ti), where S; is a finite set of states,
So 1s a state in S; designated the initial state of m;. L; is a finite set of local variables. N; is a

finite set of names, where each name is associated with a unique pair (p,a) and p is a predicate

on the variables of L; and R; and a is an action on the variables 1;, R; W; t; is a transition
function which maps from the states and names of m; to the states of m;. system state tuple is

a tuple of all machine states. An equivalent system state is said to be one where each machine
is in the same state as it corresponding machine in the other system state.A global state is the

system state tuple together with all the variables local and shared.

C. SPECIFICATION OF MACAW

An initial specification of MACAW is developed in this section using the SCM
model.This specification was developed directly from [1] with a minimum of changes or
clarifying assumptions. This was done to illustrate any problems with the protocol as
presented in [1]. Doing this serves to separate the work of this thesis from the work presented
in [1].The pseudo-code in Appendix 2 of [1] proved useful in developing the specification of
the protocol.

The complete formal specification of MACAW will consist of the local and shared
variables, state machine and predicate action table.The formal specification depicted in Figure
5 and Table 2 was developed from the pseudo code rules in Appendix B of [1]. Each device is
modeled as a machine which maintains the local variables: inbuffer, and outbuffer.
Communication between machines is achieved through the use of the shared variables that
model the information on the radio channel. Radio channel information corresponds to the
message header fields.

In order to provide a specification with the widest utility some MACAW-specific
attributes are not modeled. Example: the exchange sequence number (ESN) at each pad need

only be a single integer for incoming messages and a single integer for outgoing messages

24

since the pad only communicates with the base station and there is consequently need for
only one ESN. However, in the general case of a fully capable LAN, pad to pad
communication would be warranted. To accomplish this would require each pad to
maintain a table of ESNs, two for each machine (two would be required if traffic flowed in
both directions). For this specification, each machine communicates with only one other
machine. In a like manner, each machine was given only one DATA massage to send so
that in buffers and out buffers could be represented as a single variable rather than a
composite data type i.e. an array or record. The backoff and deferral rules are included in

the predicate action for completeness but they will be considered abstract functions and as

such not analyzed.

1. Local and Shared Variables

Each machine maintains a set of local variables that constitute part of the state of the
machine at any given instance. The shared variables that provide the means of inter-
machine communications correspond to the information contained in the header fields of
the messages described in Chapter III, e.g. the RTS, CTS, DS, RRTS, and ACK messages.
These shared variables will be annotated as Channel_*, where the wild card represents the
particular variable type: message type, address, ESN, Backoff, etc.

Predicate rules for communications between machines can be accomplished by
maintaining shared variables for message type and destination address. Shared variables
constituting the other message header fields are not used to determine the value of the
predicate. This is due to each machine communicating with only one other machine.

Each machine maintains various local variables in order to manage state
information.The local variables of each machine are inbuffer, and outbuffer. T Channel *
can be used to model the physical propagation of radio signals by controlling which
machines write and read to which Channel _* variables. Outbuffer is of the same type as

msg but will only hold DATA messages.

25

Channel_type inbuffer and outbuffer are all of the same type and represent the type of
MACAW message being transmitted i.e RTS, CTS, DS, DATA, ACK, and RRTS.
Transmission takes place by writing the message type to the shared variable channel.
Channel_DA is used to represent the destination address of the transmitted message. By
reading and writing to different channel and channel_DA variables it is possible to model
the behavior of different configurations of transmission and reception. Each machine is
thought of as being able to receive transmissions only from machines within a certain
distance and transmit to machines (not necessarily the same) within a certain distance. To
receive messages each machine reads only from one channel and channel DA variable.
This is the same as thinking of a machine as being able to receive messages that reach its
antenna a certain power level above the ambient noise level of the spectrum. In transmitting
a machine may write to multiple channel_type and channel DA variables. Each of these
variables in turn is read by a single machine. Note that in trying to accurately model
possible transmission and reception configurations of radio communications it is necessary
to allow for the possibility that machine 1 may be able to hear machine 2 while machine 2
may not be able to hear machine 1 as well as the more commonly postulated and simple
configuration of symmetry where both machines can hear the other machine’s
transmissions. Additionally, the ability to model exposed and hidden node conditions is
accomplished by using multiple shared variables. In contrast, hard wired LANs would use

a single channel that each machine wrote to for transmissions and read from for receptions.

26

2. Predicate action table and State diagram

This section depicts the state diagram and Predicate- Action Table (PAT) for the intial
MACAW specification. Figure 5 depicts the state diagram for MACAW.

timeout f) rec RTS for .prevmsg

rec RTS

ietS
rec RTS Quic

rec DATA

rec ACK

Figure 5: Initial MACAW State Diagram

27

Table 3 depicts the Predicate-Action Table for the initial MACAW specification.

Transition predicate action
1. msgtosend outbuffer = E set timer, state:= CONTEND
2.rec RTS channel.DA =i inbuffer:= channel, xmit CTS
set timer
3.1ec CTS channel = 1 inbuffer:= channel, clear timer
xmit DS, xmit DATA, set timer
4.rec DS channel = i inbuffer:= channel, set timer
5.rec DATA channel = i inbuffer:= channel, clear timer, xmit
ACK
6.1rec ACK channel =1 inbuffer:= channel
clear timer, clear out buffer
7. 1ec RTS rec RTS for prev msg inbuffer:= channel, xmit ACK
8. rec RTS channel.DA =i xmit CTS, set timer,
9.rec RTS channel.DA =1 A state = QUIET
10. rec RRTS channel.DA =i A state = IDLE xmit RTS, set timer, state:= WFCTS
11. timeout state = WFCONTEND set timer
12. timeout state = CONTEND if enter(CONTEND) = IDLE
xmit RTS, state:= WFDS
else xmit RRTS, state:= IDLE
13. timeout state /= CONTEND IIWFCONTEND | reset timer
14. Quiet channel.DA /=1 A channel = RTS set timer = length (CTS + ¢)
15. Quiet channel.DA /=i A channel = DS set timer = length(DATA + ACK +c)
16. Quiet channel.DA /=1 / channel = CTS set timer = length(DATA + ¢)? ACK
17. Quiet channel.DA /=i A channel = RRTS set timer = length(RTS + CTS + ¢)?
ACK

TABLE 3: MACAW Predicate-Action Table for Machine i.
3. Ambiguities encountered in specifying MACAW

Attempting to formally specify MACAW revealed certain ambiguities and

contradictions. From the pseudo-code in Appendix 2 of Ref [1] it was apparent that the

28

predicate column would require state information to determine which transition
applied.The verbal description of the transitions and actions sometimes used the same name
for different transitions or actions while using the current state as the means of determining

which action or transition was to be executed.

a. Transition Timeout

The transition timeout is different depending on which state the machine is in
when the timeout occurs. Additionally, the action upon timeout differs depending on which
state and what is in the channel. For instance depending on which state the machine was in

determined whether the transition timeout returned to the IDLE, CONTEND or WFCTS

state.

b. State Contend

From state CONTEND Figure 5 has three different transitions. Two of these
transitions depend not only on the timeout but also on what was the previous state. If
contend was entered from IDLE then a RTS is transmitted but if CONTEND was entered
from WFCONTEND then a RRTS is transmitted and the machine returns to the IDLE state.

This would require another local variable to determine from which state CONTEND was

entered.

c. State Quiet

The QUIET state can be entered from any of the other seven states. However,
when entering the quiet state the timer is set to a different values depending on which type
of message was in channel. Basically, the timer is set to allow the other two machines
enough time to exchange messages. The time allowed for this varies depending again on
what was in the channel. If a RTS was heard then the timer is set to allow a responding CTS
to be sent. If a CTS was heard then the timer is set to allow the DATA message to get
through. A DS message causes the timer to set for a DATA and ACK message. Lastly, a

RRTS message causes the timer to set to set for the entire message RTS-CTS exchange. It

29

was noted that while hearing a DS message allowed enough time for the ACK to be
received, a CTS only set the timer for the DATA message to be received, not the ACK

message.

d. Set Timer

Only one timer is used in [1] and as such it is used for timing a variety of events
that take different times. The action column in Table 1 reflects this fact by the notation set
timer = length (message type + c). The constant ¢ is device and environment dependent

factor for things such as propagation delay, radio key time, etc.

e. Destination address field

Explicitly mentioned in [1] was rule that whenever machine i received a message
not addressed to itself then it set a timer and transitioned to the QUIET state. Implicit in this
1s whenever machine i can make one of the transitions 1 -11 then not only does machine i
concern itself with the contents of the message type but must also check the destination
address. This is not clear in [1] and consequently was translated verbatim into the

specification of MACAW.

D. REVISED MACAW SPECIFICATION

This section presents the MACAW specification as revised during the course of
specification development. This revised specification (referred to henceforth as
MACAW_2) attempts to resolve the ambiguities uncovered in Section 3 and also present
improvements to the protocol. The shared and local variables remain basically the same.
Shared variables are channel_type, channel_da, esn, channel_my_backoff,
channel_local_backoff, and channel_retry amount. Local variables are inbuffer, outbuffer,
backoff, my_backoff, local_backoff. Figure 6 and Table 4 depict the formal specification
for MACAW_2.

The primary differences from the original specification in Section C are: two new

states were added to the specification, several transitions were renamed for greater clarity

30

and timer values were specified or assumed. The transition to the quiet state from the
WFCONTEND state was removed. This transition did not make sense in light of the fact
that a machine would still have to wait in the CONTEND state which would afford it the

opportunity to move to the QUIET state.

+RTS.prev msg

<e O ANYSTE
IDLE

quiet

rec RRTS
msgtosend

timeout
s (QuET)
[
rec contendRRTS fcontend

timeout
rec DATA send RTS
rec ACK
@ jimeout contend

rec CTS @ |
@ send RRTS

oo ACK send DATA . @
e D)

Figure 6: MACAW 2 State Diagram

The different timeout transitions were renamed to remove the ambiguity regarding

which specific timeout was in question.

31

Table 4 depicts the Predicate-Action Table for MACAW_2.

Transition

predicate

action

1. msgtosend

outbuffer /= E

set random timer(1, BO)

2.1ec RTS channel = RTS A channel.da=1i | inbuffer:= channel, channel:= CTS, set timer
(DS +¢)

3.rec CTS channel = CTSA channel.da =1 inbuffer:= channel, clear timer, channel:= DSA
channel.da =j

4. send DATA True channel:= DATA, channel.da =j, set timer (ACK
+0),

5.1ec DS channel = DSA channel.da =i inbuffer:= channel, set timer (DATA + c)

6. rec DATA channel = DATAA channel.da=i | inbuffer:= channel, clear timer,
channel:= ACK, channel.da =j

7.rec ACK channel = ACK A channel.da =i | inbuffer:= channel, clear timer, clear outbuffer

8. rec RTS.pre-
vmsg

channel = RTS A inbuffer =
DATAA channel.da =i

channel:= ACK, channel.da =j

9. wfcontend

channel = RTSA channel.da =1

10. rec RRTS

channel = RRTSA channel.da =1

channel:= RTS, set timer (CTS + c)

11. send RRTS

timer expires

channel:= RRTS, channel.da =j

12. contend timer expires set random timer(1, BO)

13. timeout timer expires clear inbuffer,

14. send RTS timer expires channel:= RTS, set timer (CTS + c)

15. quiet channel.DA /=14 channel = set timer = (CTS + ¢)
RTS

16. quiet channel.DA /=iA channel = DS | set timer = (DATA + ACK +c)

17. quiet channel.DA /=1 channel = set timer = (DS + DATA + ACK + ¢)
CTS

18. quiet channel.DA /=i channel = set timer = (RTS + CTS +¢)

RRTS

19. rec contend-

RRTS

channel.DA = i A channel
=RRTS

clear random timer, set timer(RTS + c)

TABLE 4: MACAW _2 Predicate Action for Machine i.

32

1. Refinements in MACAW 2

a. XMIT State

State XMIT was added to the specification so that the receiver side WFDS and
WEDATA states would have corresponding states on the transmitter side. Since the timer
in the WFDS state is set to allow a responding DS message to arrive and then another timer
in the WFDATA state to allow the DATA message to arrive it would be logical to have
corresponding states in the transmitter. Originally, when a CTS message was received by
machine i it transmitted a DS and DATA message and went to the WFACK state. Adding
XMIT allows the automated analysis to analyze the case where the DS is received but not
the DATA message. If both messages are sent during the transition to the WFACK state the

analysis will be unable to resolve the previous case.

b. Contend_2 State

State CONTEND_2 was added to remove the confusion resulting from the
original specification calling for different transitions from CONTEND depending on what
had been the previous state. As mentioned this would require another local variable to

maintain the previous state knowledge. Instead another state was added.

c. Timeout Transitions

The three different transitions of MACAW were named timeout. These have
been changed as follows: the timeout from the WFCONTEND state is now send RRTS, the
timeout from the IDLE state is now called contend, and the timeout from the other states

remains timeout as the same action happens when this transition is executed regardless of

from which state it is executed.

d. Transition rec contendRRTS

This transition (number 19 in PAT) was added to the CONTEND state so that if
a RRTS from machine jis received by machine i in the CONTEND state, machine i will

send a RTS to machine j. This transition is important because it is unlikely that machine i

33

will ever be the QUIET state when a RRTS is receivéd. While explicit timing information
was not included in [1], it appears that machne i will timeout from the WFCTS, return to
the IDLE state, and transtion immmediately to the CONT_‘END state while machne j is still
in the WEFCONTEND and CONTEND_2 states. The absence of a transition from the
CONTEND state upon receiving a RRTS appears to be a contradiciton.

34

V. ANALYSIS

A. GENERAL

A major benefit of formal specification of protocols or computer programs is the
potential for automated generation and analysis. Automated code generation was not part
of this thesis, however, automated analysis of the protocol was. This automated analysis
was conducted using the basic program developed in [7]. Bulent Bulbul, LTJG Turkish
Navy, developed the analysis code as part of his thesis research at
the Naval Postgraduate School. The next section outlines the basics of the analysis program
as developed by Bulbul. Section C covers the actual code and the decisions made in
representing MACAW specifics required to ran MACAW with Bulbul’s program. Section
D contains the results of the analysis. The basic results are that the protocol is free of
deadlock and, given two assumptions, the protocol will make positive progress: a property
referred to as ‘liveness’. The two assumptions that are key to liveness are 1) that a
communication link does exist between the two machines in the absence of noise and other
network traffic and 2) network traffic and noise will allow the two machines to
communicate. Several improvements to MACAW were suggested as a result of the
analysis. The improvements were in the form of additional transitions to allow more rapid
media access after a timeout occurred and to enable the DATA message receipt without

receipt of the DS message.

B. ANALYSIS PROGRAM

Bulent Bulbul, LTJG Turkish Navy, developed an Ada program for the automated
analysis of communications protocols. The program is able to conduct both System State
Analysis and Global State Analysis based on the Systems of Communicating Machines
Model. The SCM model is used to conduct the analysis. The analysis is done by
constructing a directed graph of states and the transitions between states. The states are

either System States or Global States depending on the type of analysis being conducted.

35

A System State is the tuple representing the individual machine states while a Global State
is a tuple representing the individual machine states as well as the values of all local and

shared variables.

1. User Written Program Units

For each different protocol the user must encode the rules of the protocol in the form
of predicates and actions. Additionally, definitions basic to the protocol are encoded as is
the data and format for output. Each of these (predicates, actions, definitions, and output)
take the form of a separate Ada program unit. The source code for these program units is
located in the Appendix. Once compiled into executable code, the program reads a user

generated input file to build the directed graph of states and transitions between states.

a. Package Definitions

Basic to the encoding of the communications protocol for Bubul’s program was
an Ada package named Definitions. This definitions package contains basic definitions for
use by other program units and as such must be one of the first units compiled. In this
package transition and machine types are defined as well as number of machines, buffer
type, and global variables. Transitions are an Ada enumerated type and are distinct for each
machine e.g. for machine 1 its transitions are msgtosend1, timeoutl, send_RTS1, etc. Table
4 shows the translation of transitions for machine 1 from the transitions of Table 3 to those
used in the analysis program. Transitions for other machines are similar.

Buffer type is used to represent message types for each machine. For machine 1
DS1, RTS1,CTS1,DATA1,ACKI1 and RRTS1 are the specific message types.

Machine types were represented by an Ada record type. The record for each
machine was composed of two buffer type variables: out_buff* and in_buff* where the
wildcard character represents the machine number.

Global variables were used to model the communications between machines.

Rather than represent the entire MACAW header data it was necessary to only represent

36

the message type (a buffer type variable) and the destination address (an integer

corresponding to the machine number).

b. Analyze Predicates and Action Procedures

The same file contained the separate Ada procedures for analyzing the predicates
of each machine and the action procedure for all machines. Each Machines had it own
separate procedure called Analyse Predicates_Machine* where the wildcard character
again represents the particular machine. The Action procedure contained the actions for
each transition of the model. As a result it was necessary to define separate transitions for
each machine so that for example receiving a RTS at machinel would cause different

actions than receiving a RTS at machine 2.

¢. Global Output Procedure

The procedure output_Gtuple is a user defined procedure that outputs the global
state of the system. Since varying the number of machines, global variables, or local
variables will change the global state this procedure must be modified when any of the
previous items are changed. This procedure is used only when a global state analysis is

conducted. The system state analysis used a predefined procedure to output the system state

information.

2. Input File

Once compiled, the analysis program reads an input file. The four different input files
used for the analysis of MACAW are contained in the Appendix.The input file can be
modified to run different numbers of machines and transitions between states and different
initial states as long as all the machines, states, or transitions are previously defined in the
Definitions package and/or the Analyse_ Predicates_Machine* procedure. States were

numbered instead of named since the original program used only numbered states. Table 4

37

depicts the correlation between the states from Figure 6 and the numbered states of analysis

program.
Table 5:

Figure 6 states Analysis Program states
IDLE 0
CONTEND 1
WECTS 2
XMIT 3
WFACK 4
WEDS 5
WFDATA 6
QUIET 7
WEFCONTEND 8
CONTEND_2 9

C. ENCODING MACAW FOR ANALYSIS

To encode the Predicate-Action table and state diagram for MACAW some basic
network configuration decisions were made. These decisions were made so that the full
range of states and transitions could be explored while keeping the overall number of states

and transitions manageable.

1. Number of Machines and Variables

Four machines were encoded with the complete MACAW_2 specification. Machines
1 and 2 were constructed to have machine 1 send a DATA message to Machine 2 and once
Machine 2 received that message it would send a DATA message to Machine 1. Machine
3 and machine 4 were constructed to explore the QUIET state transitions by using their

transmissions to interfere with the transmissions between machines 1 and 2.

38

The shared variables modeling the radio media were represented by ‘CHAN*’
variables. The wildcard character was used represent which machine read those particular
variables. Specifically, CHAN * and CHAN*_DA were the variables used to represent
message type and destination address for machine *. Each machine read its own set of
CHAN* variables e.g. machine 1 reads from CHAN1 and CHANI1_DA. Each machine
would write to one or more set of channel variables. This was done so that the shared media
and hidden-exposed node behavior could be analyzed. Allowing a machine to read from
only one set of media variables while writing to one or more variables models the
characteristics of a radio medium wherein not all machines will necessarily be able to hear
each other and any single machine will hear only those transmissions that reach its antenna
a certain strength above the channel noise level.

Each machine maintained three variables: in_buff* for input buffer, out_buff* for
output buffer, and state. DATA messages for transmission were stored in out_buff*.
Incoming message types were stored in in_buff* and overwritten by succeeding messages.
By storing the incoming DATA message in the input buffer (in_buff*) the machine could
determine whether it had received this message previously by testing whether in_buff =
DATA when a RTS message type was received. This was done rather than maintain a table

of exchange sequence numbers (ESN) to determine previous receipt of a DATA message.

2. Timer Settings and Backoff

Timer settings were not explicitly modeled in conducting the analysis. This
accomplished two things. First, it obtained analysis for the widest range of possible timer
values by building the graph based on possible transitions rather than the most
desirable.Desirable in this case being the transitions that would take place if all machines
were had fairly similar values for timer settings. Second, it reduced the overall complexity
of the analysis by reducing the number of shared and local variables that would be
maintained. In this case, variables would not be required for backoff, local backoff, and

remote backoff since time would not be explicitly modeled.If it was then these values

39

would all have to be maintained by each machine and also maintained as shared variables
between machines. As mentioned in Chapter IV this would require a table of local and

remote backoff variables for each machine that Machine i was communicating with.

3. Transition Naming

As outlined Section B.1.a, transitions were individually named for each machine. This
was a result of all the transitions being contained in the program’s action procedure. In
order to differentiate between receive a RTS at machinel and a receive RTS at Machine 2

the transitions were named rcv_RTS1 and rcv_RTS2 respectively.

4. QUIET State

Machines 3 and 4 were used to analyze the QUIET state and transitions to subsequent
states (WFCONTEND, CONTEND_2). By causing Machine 3 to write to Machine 1’s
CHAN* variables machine 1 would transition into the QUIET state since the CHAN_DA
will be 3 vice 1. Once in the QUIET state, Machine 1 could then transition either back to
the IDLE state or the CONTEND_2 state via the WFCONTEND state.

D. RESULTS OF ANALYSIS

Three basic configurations were analyzed with the automated analysis. All three used
the same code as in the Appendix. The number of machines was varied by using three input
files with two, three and four machines. The input files are contained in the Appendix for
reference. Not all machines executed all the possible transitions of MACAW. This was
unnecessary as long as at least one of the machines executed the relevant transitions that
particular configuration. For example, in the two machine analysis, none of the quiet state
transitions were executed for the simple reason that there was no other machine causing

interference. In none of the cases analyzed did deadlock occur.

1. 2 Machines

Machine 1 and machine 2 were run in the two machine analysis. Both began in the

IDLE state and machine 1 had a message to send to machine 2. Once machine 2 received

40

the DATA message from machine 1 it sent a DATA message to machinel. (Machine 2’s

action upon receiving a DATA messagé included writing a DATA type message to its own
output buffer: see Appendix). No deadlock occurred and the total number of system state
generated was 69. The corresponding global state analysis generated 275 states. One
artificial deadlock occurred in the global state analysis upon receipt by machine 2 of the
ACK message from machinel. The deadlock happened as a result of clearing the output
buffers when an ACK message was received. Essentially, both machines received their
respective DATA messages and no more data remained to be transferred, thus causing a

‘deadlock’.

2. 3 Machines

Machine 3 was added to the configuration for two machines in order to analyze the
quiet state behavior of machine 1 only. This was done by causing machine 3 to write to
CHAN1 and CHAN1_DA. When machine 1 received a CHAN1_DA other than 1 it
transitioned to the QUIET state. An extra action was added into the action for the quiet
transition to reset the CHANI1 variable to E (Empty). This had to be done due to the way in
which machines wrote to other CHAN¥* variables but cleared only their own CHAN*
variables. Without the clearing action (resting to E) the machine would continue to read
traffic in its CHAN* even though the transmitting machine had finished.

The analysis generated 676 system states without any deadlocks. The artificial
deadlock that took place in the case of the two machine analysis did not occur since a third
machine existed that still had transitions available when machine 1 and machine 2 had no
more transitions left. Machine 1 executed transitions to the QUIET state from all other
states and successfully returned to the IDLE state. Both machines 1 and 2 successfully
passed their respective DATA messages to each other. Machine 3 only executed the
msgtosend, send_RTS and timeout transitions since there was not a machine responding to

machine 3’s transmission.

41

3. 4 Machines

Machine 4 was added to the analysis in order that machine 3 would have a machine to
exchange data with and thereby test the quiet state transitions for all the other message
types besides the RTS type. (Only the RTS message was sent by machine 3 in the three
machine analysis above since it would never receive a CT'S to proceed further). Machine 4
also interfered with machine 2’s reception as the ‘send_RTS4’ action in the action
procedure wrote to machine 2’s CHAN2 and CHAN2_DA variables as well as CHAN3 and
CHAN3_DA. This in turn caused machine 2 to transition into the quiet state and the
subsequent states. This configuration analyzed the hidden and exposed node behavior of
the protocol.

The analysis generated 2003 states of which 1580 were unique states. The analysis
program hit a preset check point at the 2003rd state and was exited at that point rather than
continue with what would have been repetitive analysis. No deadlocks were encountered
and the DATA messages were successfully exchanged between machine 1 and machine 2.
An additional note on the configuration, machine 4 did not return a DATA message to
machine 3. Neither machine 3 nor 4 executed any quiet state transitions as there were no

machines writing to their CHAN1 and CHAN1_DA VARIALBES besides themselves.

E. IMPROVEMENTS SUGGESTED BY ANALYSIS

Three possible improvements to MACAW were suggested by the analysis. These were
three additional transitions in the state diagram. The first was a transition from the WFDS
state for receiving the DATA message without first receiving the DS message.The second
transition suggested by the analysis was to add a loop transition to the WFDS that would
allow receipt of a RTS message and respond with a CTS message. The third and last
transition was similar in concept to the loop transiting in the WFDS state except this one
would be added to the WFCTS state so that a RTS could be sent from that state. These

possible improvements are discussed in greater detail below.

42

1. Receive DATA from WFDS State

The analysis showed that if the DS message was not received then even if the DATA
message was received correctly it could not be processed. This would seem to be a waste
of time given that both machines currently will return to the IDLE state and begin the
message procedure over. Rather than reject the DATA message if the leading DS message
is lost a transition is suggested from the WFDS state that allows receipt of the DATA
message. This transition is depicted in the partial state diagram shown in Figure 7.

It might be argued that the likelihood is small of losing the DS message without also

new transition

rec DATA
rec DATA

Figure 7: Transition for receiving DATA from WFDS state

losing the DATA message. Given the rather static and noise-free environment of the PARC
LAN this is probably true. However, in an environment with highly mobile stations or a
greater level of noise the possibility exists that a station might not receive the preceding
RTS and CTS messages between machines 1 and 2 and consequently transmit a RTS at the
same time as the DS message. Regardless of the situation that would cause loss of the DS

message, the DATA message should be accepted if received properly.

43

2. Loop Transition in WFDS State

The second improvement suggested by the analysis was a loop transition to the WFDS
state that would allow receipt of one or more RTS messages and respond with a CTS
message. This situation would arise if the machine sending the RTS (machine 1) executes
the timeout transition from the WFCTS state before receiving the CTS message from
machine 2. The CTS may have been transmitted and lost or the original RTS may not have
been received by machine 2. Rather than resume the media contention process, with the
attendant delays, the machine might very well just accept a subsequent RTS. Rule 2 in the
PAT of Table 3 would have to be modified to accommodate a timer value that is sufficient
for whatever number of RTS messages the implementation wanted to receive before taking

the timeout transition. This transition is depicted in Figure 8.

rec RTS

new transition

rec DATA

Figure 8: Transition for RTS receipt in the WFDS state

This transition would make little sense without the next transition that adds a
send_RTS loop to the WFCTS. Without the send_RTS loop, the machine sending the RTS
will timeout and resume the media contention process in spite of the receiving machine

waiting in WFDS state.

44

3. Loop Transition in WFCTS State

Coupled with the previous transition is a transition that is a loop transition from the
WECTS state that sends one or more RTS messages. This allows the machine with the
DATA message to continue to attempt to establish a connection with the intended receiver
rather than timeout and resume the media contention process. The contention process might
be rather lengthy depending on the value of the Backoff counter. This transition is depicted

in the partial state diagram of Figure 9. The timer value of line 14 in the PAT of TAble 3

msgtosend
new transition

send RTS

send RTS

Figure 9: Transition for send RTS in the WFCTS state

would have ot be modified similiarlyto the rule 2 timer value to allow tiem for one or more

RTS and CTS messages to be exchanged.

45

o

VI. CONCLUSIONS

‘Wireless networking has enjoyed rapid growth in recent years as more and more
applications are found that can benefit from wireless networks. Applications from inner-
office LANs to WANS exist as well as private, commercial and military uses. One concern
shared by all wireless networks is media access control (MAC). MAC protocols form a
layer of any network model and are particularly important for wireless networking since
the media, be it radio, light, or sound must be shared amongst the devices in the network.
A good MAC protocol will resolve media contention both in the interests of fairness and
network throughput.

Military Applications abound for single channel wireless radio protocols. Most
currently use some form of Carrier Sense for media contention. As per [2] and [3] Carrier
Sense is not an efficient means of media contention for wireless system due to the hidden
and exposed nodes problem.

Packet radio networks first developed under the auspices of ARPA are now primarily
a amateur radio province. However, with the advent of systems such as the Marine Corps
Tactical Data Network (TDN), packet radio networks are seeing implementation as fielded
operational systems with DOD units.

MACAW is a MAC protocol proposed by researchers ar Xerox PARC that builds on
the MACA protocol proposed by Karn. Both protocols approach the media contention
problem in a similar manner. This approach, different than the more common CSMA
approach, attempts to determine the state of the media at the intended receiver rather than
just at the sender as in the CSMA approach. They do this by in essence reserving the media
with both the intended receiver and other stations within hearing by exchanging RTS
(Request to Send) and CTS (Clear to Send) messages.

This thesis presents a formal specification of MACAW using the formal model Systems
of Communicating Machines. This formal specification was then encoded for use in an

automated analysis of MACAW between 2, 3, and 4 machines.

47

A. FORMAL SPECIFICATION

MACAW is formally specified and analyzed using a model called Systems of
Communicating Machines. The Systems of Communicating Machines (SCM) model is
used to assist in the describing and analyzing communications protocols. In specifying
MACAW various additions to the original proposal [1] were added. These resulted from
ambiguities or errors detected in the original proposal. Two new states and one new
transition were added and two tinstones were renamed.

The specific changes added were: 1) adding the XMIT state to the transmitting side of
the protocol that would mirror the WFDS and WFDATA states on the receive side, 2)
adding the CONTEND_2 state in place of the transition from the WFCONTEND state to
the CONTEND state, 3) renaming two of the three timeout transitions to resolve ambiguity
regarding which timeout was in question, and 4) adding a transition in the CONTEND state
to receive a RRTS message instead of only allowing receipt of RRTS messages in IDLE

state.

B. ANALYSIS

An automated analysis of MACAW (with the changes mentioned above) was
conducted. This automated analysis used an Ada program that uses the Systems of
Communicating Machines model to analyze a given communication protocol. Each new
protocol requires encoding definitions, predicates, actions, and output rules. The program
is capable of conducting either global or system state analysis. The extent of the analysis
may be varied by changing the input file that the executable reads. The input file may
change numbers of machines, transitions, and initial states of the machines. A caveat is that
any machines, transitions, or states in the input file must also be reflected in files for
definitions, predicates, and actions. Essentially, once all possible machines, states, and
transitions have been defined in the program then any of those items may be deleted from

a subsequent analysis by removing them from the input file.

48

The actual analysis consisted of 2, 3, and 4 machines. Machines 1 and 2 were used to
analyze the behavior of basic protocol without any transitions to the QUIET state. Machine
3 was added to cause machine 1 to exercise the transitions to the QUIET state. Machine 4
was added to analyze the hidden and exposed node performance. In every configuration the
DATA messages were successfully exchanged. The number of states varied from 275 states

for 2 machines to 1580 states for the four machine configuration.

C. IMPROVEMENTS TO MACAW

The course of analysis suggested three improvements to MACAW. These
improvements took the form of additional transitions to the state diagram. The first
transition was a transition that would allow receipt of a DATA message in the WFDS state.
In the original proposal the DS message must be received before the DATA message. The
proposed addition would allow the DATA message to be received in the case where the DS
message is not received (a collision with another message is one plausible cause). The
second and third transitions are related in that in effect they give the two machines involved
in a data exchange more than one chance to exchange RTS and CTS messages before taking
the timeout transiting back to the IDLE state and resuming the media contention process.
The first of these two transitions would allow the intended recipient of a DATA message
to receive one or more RTS messages in the WFDS state. The second transition would
allow the machine that has a DATA message for transfer to send one or more RTS

messages to establish a connection before returning to the IDLE state via the timeout

transition.

D. SUGGESTIONS FOR FURTHER WORK

Severél possible areas for further work exist. The ideal area for further work would be
implementation of MACAW_2 in a hardware system where it could undergo actual testing
and use. Short of that goal, MACAWSs applicability to packet radio networks can be
explored. MACAW should be relevant to packet radio networks since MACAW'’s

conceptual ancestor, MACA, was proposed for use in packet radio networks. Another area

49

of work could be redesign of the analysis program to incorporate runtime changes to the
protocol under analysis. Currently, every change necessitates recompiling the code.
Another useful feature for the analysis program would include more informative output. As

is the output must be hand traced to gain information.

50

LIST OF REFERENCES

Bharghavan,V., Demers, A., Shenker, S., Zhang, L., “MACAW: A Media Access
Protocol for Wireless LAN’s”, Association for Computing Machinery SIGCOMM
94 - 8/94.

Karn, P., “MACA - A New Channel Access Method for Packet Radio”, ARRL/
CRRL Amatuer Radio 9th Computer Networking Conference, September 22, 1990.

Rypinski, C., “Limitations of CSMA in 802.11 Radiolan Applications”, IEEE 802.11
Working Group Paper 802.11/91-46a.

Katz, R., “Adaptation and Mobility in Wireless Information Systems”, IEEE
Personal Communications, First Quarter 1994,

Epstein, M., et al, “Application of Commercial Wireless LAN Technology to

Foward Area Mobile Communication” , Conference Proceedings Military
Communications, MILCOMM 94-2.

Lundy, G., “Specification and analysis of a data transfer protocol using systems of
communicating machines”, Distributed Computing, May 1991.

Bulbul, B. “A Protocol Validator for the SCM and CFSM Models”, Master’s Thesis,
Naval Postgraduate School, June 1993.

51

APPENDIX

This appendix contains the source code used to translate the specification of MACAW
into executable code for the automated analysis done in Chapter V.

with TEXT_IO;
use TEXT _IO;
package definitions is
num_of_machines : constant := 4 ;
type scm_transition_type 1is
(msgtosendl,timeout1,send_RTS1,rcv_CTS1,rcv_ACK1,rcv_DSI,
snd_datal,rcv_RTS1,send_CTS1,rcv_DATAIl,rcv_RRTSI,
quietl, wfcontend1, contendl, send_rrts1, send_ACKI,

msgtosend?2 timeout2,send_RTS2,rcv_CTS2,rcv_ACK2,rev_DS2,
snd_data2.rcv_RTS2,send_CTS2,rcv_DATA2,rcv_RRTS2,
quiet2, wfcontend2, contend2, send_rrts2, send_ACK2,

msgtosend3,timeout3,send_RTS3,rcv_CTS3,rcv_ACK3,rcv_DS3,
snd_data3,rcv_RTS3,send_CTS3,rcv_DATA3,rcv_RRTS3,
quiet3, wfcontend3, contend3, send_rrts3, send_ACK3,

msgtosend4,timeoutd,send_RTS4,rcv_CTS4,rcv_ACK4,rcv_DS4,
snd_data4.rcv_RTS4,send_CTS4,rcv_DATA4 rcv_RRTS4,
quiet4, wfcontend4, contend4, send_rrts4, send_ACK4,

unused);

type buffer_type is (DS1, RTS1, CTS1, DATAI, ACK1, RRTS1,
DS2, RTS2, CTS2, DATA2, ACK2, RRTS2,
DS3, RTS3, CTS3, DATA3, ACK3, RRTS3,
DS4, RTS4, CTS4, DATA4, ACK4, RRTS4,E);

package buff_enum_io is new Enumeration_io(buffer_type);
use buff_enum_io;
type dummy_type is range 1..255;

type machinel _state_type is
record

53

out_buff1 : buffer_type := DATA2;
in_buff1 : buffer_type:=E;
end record;

type machine2_state_type is
record
out_buff2,
in_buff2 : buffer_type:=E;
end record;

type machine3_state_type is

record
out_buff3 : buffer_type := DATA3;
in_buff3 : buffer_type := E;

end record;

type machined_state_type is
record
out_buff4,
in_buff4 : buffer_type:=E;
end record;

type machine5_state_type is
record
dummy : dummy_type;
end record;

type machine6_state_type is
record
dummy : dummy_type;
end record;

type machine7_state_type is
record
dummy : dummy_type;
end record;

type machine8_state_type is
record
dummy : dummy_type;
end record;

type global_variable_type is

-- data message for m2

54

record
CHANI,
CHAN?2,
CHANS3,
CHAN4 : buffer_type :=E;
CHANI1_DA, CHAN2_DA, CHAN3_DA, CHAN4_DA : natural :=0;
end record;

end definitions;

55

procedure Analyze_Predicates_Machinel(local : machinel_state_type;
GLOBAL.: global_variable_type;
S : natural;
w :in out transition_stack_package.stack) is

begin

case s is
when 0 =>
if (GLOBAL.CHAN1 =RTS1) AND (GLOBAL.CHANI1_DA =1) then
if (LOCAL.in_buffl = DATA1) then
Push (w, send_ACK1);

else
Push(w, rcv_RTS1); --go to state 5

end if;

elsif (GLOBAL.CHAN1 =RRTS1) AND (GLOBAL.CHANI1_DA = 1)then
Push(w, rcv_RRTS1); --go to state 2

elsif(LOCAL.out_buffl /= E) then
Push(w,msgtosend1); --go to state 1

elsif (GLOBAL.CHAN1 /=E) AND (GLOBAL.CHANI1_DA /= l)then
Push(w, quietl); --go to state (Quiet)

end if;

when 1 => --corresponds to MACAW CONTEND state

if (GLOBAL.CHAN1 =RTS1) AND (GLOBAL.CHANI1_DA =1) then
Push (w, rcv_RTS1); -- go tostate 5

elsif (GLOBAL.CHAN1 =RRTS1) AND (GLOBAL.CHANI1_DA = 1)then
Push(w, rcv_RRTS1); --go to state 2

elsif (GLOBAL.CHAN1 /=E) AND (GLOBAL.CHANI1_DA /= 1)then
Push(w, quietl);

else
Push(w,send_RTS1); -- goto state 2

end if;

when 2 =>

if (GLOBAL.CHAN1 = CTS1) AND (GLOBAL.CHAN1_DA =1) then
Push(w, rcv_CTS1); -- go to state 3

elsif (GLOBAL.CHAN1 = ACK1) AND (GLOBAL.CHAN1_DA = 1) then
Push(w, rcv_ACK1); -- go to state 0, message already received

elsif (GLOBAL.CHANI1 /=E) AND (GLOBAL.CHANI1_DA /= 1)then
Push(w, quietl);

elsif (GLOBAL.CHANI1 /= CTS1) then
Push(w, timeoutl); -- go to state 0

end if;

56

when 3 => --an intermediate state after WFCTS
Push(w, snd_datal); --go to state 4

when 4 => --MACAW WFACK state

if (GLOBAL.CHAN1 = ACK1) AND (GLOBAL.CHANI1_DA = 1) then
Push(w, rcv_ACK1); -- go to state O

elsif (GLOBAL.CHANI1 /=E) AND (GLOBAL.CHAN1_DA /= 1)then
Push(w, quietl);

elsif (GLOBAL.CHANI1 /= ACK1) then
Push(w, timeoutl); --go to state 0

end if;

-- states 5 and 6 model the WFDS and WFDATA states of MACAW
-- machines
when 5 => -- corresponds to WFDS state
if (GLOBAL.CHAN1 =DS1) AND (GLOBAL.CHAN1_DA = 1) then
Push(w, rcv_DS1); -- go to state 6
elsif (GLOBAL.CHANI1 /=E) AND (GLOBAL.CHANI1_DA /= 1)then
Push(w, quietl);
elsif (GLOBAL.CHANI1 /= DS1) then
Push(w, timeoutl); -- go to state 0
end if;

when 6 => -- state 6 corresponds to WFDATA state

if (GLOBAL.CHAN1 =DATA1) AND (GLOBAL.CHANI1_DA = 1) then
Push(w,rcv_DATALl);, --goto state(

elsif (GLOBAL.CHANI1 /=E) AND (GLOBAL.CHAN1_DA /= l)then
Push(w, quietl);

elsif (GLOBAL.CHANI1 /= DATAL) then
Push(w, timeoutl); -- go to state 0

end if;

when 7 => --corresponds to QUIET
if (GLOBAL.CHAN1 =RTS1) AND (GLOBAL.CHAN1_DA = 1) then
Push(w, wfcontendl); --go to state 8
else
Push(w, timeoutl); -- go to state 0
end if;

when 8 =>

if (GLOBAL.CHANI1 /= E) AND (GLOBAL.CHAN1_DA /= 1) then
Push(w, quietl); -- go to state 7

57

else
Push(w, contend1); -- go to state 9
end if;

when 9 =>

if (GLOBAL.CHANI1 /= E) AND (GLOBAL.CHAN1_DA /= 1) then
Push(w, quietl); -- go to state 7

else
Push(w, send_rrts1); -- go to state 0

end if;

when others =>
null;
end case;
end Analyze_Predicates_Machinel;

separate (main)
procedure Analyze_Predicates_Machine2(local : machine?2_state_type;
GLOBAL.: global _variable_type;
S: natural;
w :in out transition_stack_package.stack) is
begin
case S is
when 0 =>
if (GLOBAL.CHAN2 =RTS2) AND (GLOBAL.CHAN2_DA =2) then
if (LOCAL.in_buff2 = DATAZ2) then
Push (w, send_ACK?2); -- Data was already received
else
Push(w, rcv_RTS2); --go to state 5
end if;
elsif (GLOBAL.CHAN2 =RRTS2) AND (GLOBAL.CHAN2_DA = 2) then
Push(w, rcv_RRTS2); -- go to state 2
elsif(LOCAL.out_buff2 /= E) then
Push(w,msgtosend2); -- go to state 1
elsif (GLOBAL.CHAN2 /=E) AND (GLOBAL.CHAN2_DA /= 2) then
Push(w, quiet2);
end if;

when 1 => --corresponds to MACAW CONTEND state
if (GLOBAL.CHAN2 =RTS2) AND (GLOBAL.CHAN2_DA =2) then
Push(w, rcv_RTS2); -- goto state 5
elsif (GLOBAL.CHAN2 = RRTS2) AND (GLOBAL.CHAN2_DA = 2) then
Push(w, rcv_RRTS2); -- go to state 2

58

elsif (GLOBAL.CHAN2 /=E) AND (GLOBAL.CHAN2_DA /=2) then
Push(w, quiet2);

else
Push(w,send_RTS2); -- go to state 2
end if;
when 2 => -- 2 1s WEFCTS state

if (GLOBAL.CHAN2 = CTS2) AND (GLOBAL.CHAN2_DA = 2) then
Push(w, rcv_CTS2); -- go to state 3

elsif (GLOBAL.CHAN2 = ACK2) AND (GLOBAL.CHAN2_DA =2) then
Push(w, rcv_ACK2); -- go to state 0, message already received

elsif (GLOBAL.CHAN2 /=E) AND (GLOBAL.CHAN2_DA /=2) then
Push(w, quiet2);

elsif (GLOBAL.CHAN?2 /= CTS2) then

Push(w, timeout2); -- go to state
end if;
when 3 => --an intermediate state after WFCTS

Push(w, snd_data2); -- go to state 4

when 4 => --MACAW WFACK state

if (GLOBAL.CHAN2 = ACK2) AND (GLOBAL.CHAN2_DA = 2) then
Push(w, rcv_ACK2); -- go to state 0

elsif (GLOBAL.CHAN2 /=E) AND (GLOBAL.CHAN2_DA /=2) then
Push(w, quiet2);

elsif (GLOBAL.CHAN2 /= ACK2) then
Push(w, timeout2); -- go to state 0

end if;

when 5 => --5 corresponds to WFDS

if (GLOBAL.CHAN2 =DS2) AND (GLOBAL.CHAN2_DA = 2) then
Push(w, rcv_DS2); -- go to state 6

elsif (GLOBAL.CHAN2 /=E) AND (GLOBAL.CHAN2_DA /= 2) then
Push(w, quiet2);

elsif (GLOBAL.CHAN2 /= DS2) then
Push (w, timeout2); -- go to state 0

end if;

when 6 => --6 corresponds to WFDATA

if (GLOBAL.CHAN2 =DATA2) AND (GLOBAL.CHAN2_DA =2) then
Push(w,rcv_DATA2); -- go to state 0

59

elsif (GLOBAL.CHAN2 /= E) AND (GLOBAL.CHAN2_DA /= 2) then
Push(w, quiet2);

elsif (GLOBAL.CHAN2 /= DATA2) then
Push(w, timeout2); -- go to state 0

end if;

when 7 => --corresponds to QUIET
if (GLOBAL.CHAN2 =RTS2) AND (GLOBAL.CHAN2_DA =2) then
Push(w, wfcontend2); --go to state 8
else
Push(w, timeout2); -- go to state 0
end if;

when 8 =>
if (GLOBAL.CHAN?2 /= E) AND (GLOBAL.CHAN2_DA /=2) then
Push(w, quiet2); -- go to state 7
else
Push(w, contend2); -- go to state 9
end if;

when 9 =>

if (GLOBAL.CHAN?2 /= E) AND (GLOBAL.CHAN2_DA /=2) then
Push(w, quiet2); -- go to state 7

else
Push(w, send_rrts2); -- go to state 0

end if;

when others =>
null;
end case;

end Analyze_Predicates_Machine2;

separate (main)

procedure Analyze_Predicates_Machine3(local : machine3_state_type;
GLOBAL.: global_variable_type;

S : natural;

w : in out transition_stack_package.stack) is

begin

case s is
when 0 =>

60

if (GLOBAL.CHAN3 = RTS3) AND (GLOBAL.CHAN3_DA = 3) then
if (LOCAL.in_buff3 = DATA3) then
Push (w, send_ACK3);
else
Push(w, rcv_RTS3); --go to state 5
end if;
elsif (GLOBAL.CHAN3 =RRTS3) AND (GLOBAL.CHAN3_DA = 3) then
Push(w, rcv_RRTS3); -- go to state 2
elsif(LOCAL.out_buff3 /= E) then
Push(w,msgtosend3); -- go to state 1
elsif (GLOBAL.CHAN3 /= E)AND (GLOBAL.CHAN3_DA = 3) then

Push(w, quiet3); -- go to state 7
end if;
when 1 => --corresponds to MACAW CONTEND state

if (GLOBAL.CHAN3 = RTS3) AND (GLOBAL.CHAN3_DA =3) then
Push(w, rcv_RTS3); -- go to state 5
elsif (GLOBAL.CHAN3 /= E)AND (GLOBAL.CHAN3_DA = 3) then

Push(w, quiet3); -- go to state 7
else

Push(w,send_RTS3); -- gotostate?2
end if;

-- cases 2-4 added 10 Apr and 13 Apr added if clauses
when 2 => --WEFCTS state
if (GLOBAL.CHAN3 = CTS3) AND (GLOBAL.CHAN3_DA =3) then
Push(w, rcv_CTS3); -- go to state 3
elsif (GLOBAL.CHAN3 = ACK3) AND (GLOBAL.CHAN3_DA = 3) then
Push(w,rcv_ACK3); -- go to state 0, message already received
elsif (GLOBAL.CHAN3 /= E)AND (GLOBAL.CHAN3_DA = 3) then
Push(w, quiet3); -- go to state 7
elsif (GLOBAL.CHAN3 /= CTS3) then

Push(w, timeout3); -- go to state 0
end if;
when 3 => --an intermediate state after WFCTS

Push(w, snd_data3); -- go to state 4

when 4 => -MACAW WFACK state
if (GLOBAL.CHAN3 = ACK3) AND (GLOBAL.CHAN3_DA =3) then
Push(w, rcv_ACK3); -- goto state 0
elsif (GLOBAL.CHAN3 /= E)AND (GLOBAL.CHAN3_DA = 3) then
Push(w, quiet3); -- g0 to state 7

61

elsif (GLOBAL.CHAN3 /= ACK3) then

Push(w, timeout3); -- go to state 0
end if;
when 5 => -- 51s WEFDS state
if (GLOBAL.CHAN3 =DS3) AND (GLOBAL.CHAN3_DA = 3) then
Push(w, rcv_DS3); -- go to state 6
elsif (GLOBAL.CHAN3 /= E)AND (GLOBAL.CHAN3_DA =3) then
Push(w, quiet3); -- go to state 7

elsif (GLOBAL.CHAN3 /=DS3) then
Push (w, timeout3); -- go to state 0

end if;
when 6 => -- 6is WFDATA state

if (GLOBAL.CHAN3 = DATA3) AND (GLOBAL.CHAN3_DA = 3) then
Push(w,rcv_DATA2); -- go to state 0

elsif (GLOBAL.CHAN3 /= E) AND (GLOBAL.CHAN3_DA /= 3) then

Push(w, quiet3); -- go to state 7

elsif (GLOBAL.CHAN3 /=DATA3) then
Push(w, timeout3); -- go to state 0

end if;

when 7 => --corresponds to QUIET
if (GLOBAL.CHAN3 = RTS3) AND (GLOBAL. CHAN3 _DA =3) then
Push(w, wfcontend3); --go to state 8
else
Push(w, timeout3); -- go to state 0
end if;

when 8 =>
if (GLOBAL.CHAN3 /= E) AND (GLOBAL.CHAN3_DA /= 3) then
Push(w, quiet3); -- go to state 7
else
Push(w, contend3); -- go to state 9
end if;

when 9 =>

if (GLOBAL.CHAN3 /= E) AND (GLOBAL.CHAN3_DA /= 3) then
Push(w, quiet3); -- go to state 7

else
Push(w, send_rrts3); -- go to state 0

end if;

62

when others =>
null;
end case;

end Analyze_Predicates_Machine3;

separate (main)
procedure Analyze_Predicates_Machine4(local : machine4_state_type;

GLOBAL.: global_variable_type;
s : natural;
w : in out transition_stack_package.stack) is

begin

case s is
when 0 =>
if (GLOBAL.CHAN4 = RTS4) AND (GLOBAL.CHAN4_DA = 4) then
if (LOCAL.in_buff4 = DATA4) then
Push (w, send_ACK4);
else
Push(w, rcv_RTS4); --go to state 5
end if;
elsif (GLOBAL.CHAN4 = RRTS4) AND (GLOBAL.CHAN4_DA =4) then
Push(w, rcv_RRTS4); -- go to state 2
elsif(LOCAL.out_buff4 /= E) then
Push(w,msgtosend4); -- go to state 1
elsif (GLOBAL.CHAN4 /= E)AND (GLOBAL.CHAN4_DA =4) then

Push(w, quiet4); -- go to state 7
end if;
when 1 => --corresponds to MACAW CONTEND state

if (GLOBAL.CHAN4 = RTS4) AND (GLOBAL.CHAN4_DA =4) then
Push(w, rcv_RTS4); -- goto state 5
elsif (GLOBAL.CHAN4 /= E)AND (GLOBAL.CHAN4_DA = 4) then

Push(w, quiet4); -- go to state 7
else
Push(w,send_RTS4); -- go to state 2
end if;
when 2 => -WFCTS state

if (GLOBAL.CHAN4 = CTS4) AND (GLOBAL.CHAN4_DA =4) then
Push(w, rcv_CTS3); -- go to state 3

63

elsif (GLOBAL.CHAN4 = ACK3) AND (GLOBAL.CHAN4_DA = 4) then
Push(w, rcv_ACK3); -- go to state 0, message already received

elsif (GLOBAL.CHAN4 /= E)AND (GLOBAL.CHAN4_DA = 4) then
Push(w, quiet4); -- go to state 7

elsif (GLOBAL.CHAN4 /= CTS4) then

Push(w, timeout4); -- go to state O
end if;
when 3 => --an intermediate state after WECTS

Push(w, snd_data4); -- go to state 4

when 4 => --MACAW WFACK state
if (GLOBAL.CHAN4 = ACK4) AND (GLOBAL.CHAN4_DA =4) then
Push(w, rcv_ACK4); -- go to state 0
elsif (GLOBAL.CHAN4 /= E)AND (GLOBAL.CHAN4_DA = 4) then
Push(w, quiet4); -- go to state 7
elsif (GLOBAL.CHAN4 /= ACK4) then

Push(w, timeout4); -- go to state 0
end if;
when 5 => -- 51s WFDS state
if (GLOBAL.CHAN4 =DS4) AND (GLOBAL.CHAN4_DA = 4) then
Push(w, rcv_DS4); -- go to state 6

elsif (GLOBAL.CHAN4 /= E)AND (GLOBAL.CHAN4_DA = 4) then
Push(w, quietd); -- go to state 7

elsif (GLOBAL.CHAN4 /= DS4) then
Push (w, timeout4); -- go to state 0

end if;
when 6 => -- 6is WFDATA state

if (GLOBAL.CHAN4 = DATA4) AND (GLOBAL.CHAN4_DA = 4) then
Push(w,rcv_DATA4); -- go to state 0

elsif (GLOBAL.CHAN4 /= E)AND (GLOBAL.CHAN4_DA =4) then

Push(w, quiet4); -- go to state 7

elsif (GLOBAL.CHAN4 /= DATA4) then
Push(w, timeoutd4); -- go to state

end if;

when 7 => --corresponds to QUIET
if (GLOBAL.CHAN4 = RTS4) AND (GLOBAL.CHAN4_DA = 4) then
Push(w, wfcontend4); --go to state 8
else
Push(w, timeoutd); -- go to state 0

end 1f;

when 8 =>
if (GLOBAL.CHAN4 /= E) AND (GLOBAL.CHAN4_DA /= 4) then
Push(w, quiet4); -- go to state 7
else
Push(w, contend4); -- go to state 9
end if;

when 9 =>

if (GLOBAL.CHAN4 /= E) AND (GLOBAL.CHAN4_DA /= 4) then
Push(w, quiet4); -- go to state 7

else
Push(w, send_rrts4); -- go to state 0

end if;

when others =>
null;
end case;
end Analyze_Predicates_Machine4;

-- the following Analyze Predicate procedures are placeholders
separate (main)
procedure Analyze_Predicates_Machine5(local : machine5_state_type;
GLOBAL: global_variable_type;
s : natural;
w : in out transition_stack_package.stack) is

begin
null;
end Analyze_Predicates_Machine5;

separate (main)

procedure Analyze_Predicates_Machine6(local : machine6_state_type;
GLOBAL: global_variable_type;
S : natural;
w : in out transition_stack_package.stack) is

begin

null;
end Analyze_Predicates_Machine6;

65

separate (main)

procedure Analyze_Predicates_Machine7(local : machine7_state_type;
GLOBAL.: global_variable_type;
S : natural;
w : in out transition_stack_package.stack) is

begin
null;
end Analyze Predicates_Machine7,

separate (main)

procedure Analyze_Predicates_Machine8(local : machine8_state_type;
GLOBAL: global_variable_type;
S : natural;
w : 1n out transition_stack_package.stack) is

begin

null;
end Analyze_Predicates_Machine8;

66

separate (main)

procedure Action(in_system_state : in out Gstate_record_type;
in_transition :in out scm_transition_type;
out_system_state : in out Gstate_record_type) is

begin
-- actions for machine 1

case (in_transition) is
when (msgtosend1) =>
null;
-- nothing is done when a message is added to the out buffer
-- except move into the Contend state (state 1)

when (timeoutl) =>
_ 23k skeooke sk ok sk ok ok ok sk sk sk sk ok s ok sk ok sk sk sk sk ok sk sk sk sk sk sk sk sk ok sk sk ok ok ok sk sk sk ok sk ok sk sk sk sk sk

-- we dont want to clear the channel upon timeout
-- out_system_state. GLOBAL_VARIABLES.CHAN2:=E;
out_system_state.machinel_state.in_buffl := E;

when (send_RTS1) =>
out_system_state. GLOBAL_VARIABLES.CHAN2:= RTS2;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;
--in_system_state.machinel_state.out_buff1;
--out_system_state.machinel_state.out_buffl :=E;

when (rcv_CTS1) =>
i out_system_state.machinel _state.in_buffl :=
in_system_state. GLOBAL_VARIABLES.CHAN];
out_system_state. GLOBAL_VARIABLES.CHANI1 :=E;
out_system_state. GLOBAL_VARIABLES.CHAN?2 := DS2;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;

when (snd_datal) =>
out_system_state. GLOBAL_VARIABLES.CHAN2:=
in_system_state.machinel_state.out_buff1;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;
--out_system_state.machine1_state.out_buffl := E;
-~ out_buff1 should keep DATA until 1 gets an ack
-- out_buff1 := E commented out for 11-4 rgraph

67

when (rcv_ACK1) => -- go to state 0
out_system_state.machinel_state.in_buffl :=
in_system_state. GLOBAL_VARIABLES.CHANI;
out_system_state. GLOBAL_VARIABLES.CHANI1:=E;
out_system_state.machinel_state.out_buffl := E;
-- sets out_buffer to empty and creates deadlock

when (rcv_RTS1) => -- go to state 5

out_system_state.machinel_state.in_buffl :=
in_system_state. GLOBAL_VARIABLES.CHAN1;

out_system_state. GLOBAL_VARIABLES.CHAN2 :=CTS2;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;
out_system_state. GLOBAL_VARIABLES.CHANI1 :=E;

-- outsystem state.global variables.chan2 := E uncommented

-- 11may because chan2 must be clear for mach 2 to transmit

when (rcv_DS1) =>
out_system_state.machinel_state.in_buffl :=
in_system_state. GLOBAL_VARIABLES.CHAN1;
out_system_state. GLOBAL_VARIABLES.CHANI :=E;

when (rcv_DATAIL) =>

out_system_state.machinel_state.in_buffl :=
in_system_state. GLOBAL_VARIABLES.CHAN];

-- out_system_state.machine2_state.out_buff2 :=

-~ out_system_state.machine2_state.in_buff2;
out_system_state. GLOBAL_VARIABLES.CHAN]1 :=E;
out_system_state. GLOBAL_VARIABLES.CHAN?2 :=ACK2;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;

when (send_ACK1) =>
out_system_state. GLOBAL_VARIABLES.CHAN2:= ACK2;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;
-~ out_system_state.machinel_state.out_buffl := E;

when (quietl) => -- go to state 7
out_system_state.machinel_state.in_buff] :=
in_system_state. GLOBAL_VARIABLES.CHANI;
-- this next action artificially clears machine =1’s Channel
-- since normally the receiving machine would clear its own
-- channel. Artificial since 1 is not receiving the message
-- This is the only way 1 can ever transiton to state 8 & 9.

68

out_system_state. GLOBAL_VARIABLES.CHANI1 :=E;

when (wfcontendl) =>
- out_system_state.machinel_state.in_buff1 :=
in_system_state. GLOBAL_VARIABLES.CHANI;
-- see comments for quietl
out_system_state. GLOBAL_VARIABLES.CHANI :=E;

when (contend1) =>
out_system_state.machinel_state.in_buffl :=
in_system_state. GLOBAL_VARIABLES.CHANI;

-- see comments for quietl
out_system_state. GLOBAL_VARIABLES.CHANTI :

E;

when (send_rrts1) =>
out_system_state. GLOBAL_VARIABLES.CHAN2 := RRTS2;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;

when (rcv_RRTS1) =>
out_system_state. GLOBAL_VARIABLES.CHAN2:= RTS2;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=2;

koo sk skeok ok okook sk skeok ok skeok sk sk sk sk sk skt sk skeske sk sk stk skesk sk sk ok sk sk sk sk ok sk sk ok ok skesk sksk sk stk ke sk sk sk ek sk sk sk sk sk

-- transitions for machine 2

when (msgtosend2) =>
null;

when (timeout2) =>
=3k sk ok ok sk ok sk ok sk sk ke sk sk ok ok ok ok sk sk ok Sk sk ok sk sk sk ok sk ok sk sk sk sk sk sk sk Sk sk sk sk sk ok sk sk k

-- out_system_state. GLOBAL_VARIABLES.CHANI1:=E;
out_system_state.machine2_state.in_buff2 := E;

when (send_RTS2) =>
out_system_state. GLOBAL_VARIABLES.CHANI1:= RTS1;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=1;
--in_system_state.machine1_state.out_buffl;
--out_system_state.machinel_state.out_buffl := E;

when (rcv_CTS2) =>
out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHAN?2;
out_system_state. GLOBAL_VARIABLES.CHAN?2 :=E;

69

out_system_state. GLOBAL_VARIABLES.CHANI := DSI;
out_system_state. GLOBAL_VARIABLES.CHANI1_DA :=I;

when (snd_data2) =>
out_system_state. GLOBAL_VARIABLES.CHANI1:=
in_system_state.machine?2_state.out_buff2;

when (rcv_ACK2) =>
out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHAN2;
out_system_state. GLOBAL_VARIABLES.CHAN2:= E;
out_system_state.machine2_state.out_buff2 := E;

when (rcv_RTS2) => -- go to state 5

out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHAN?2;

out_system_state. GLOBAL_VARIABLES.CHAN1 := CTS1;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=1;
out_system_state. GLOBAL_VARIABLES.CHAN?2 := E;

-- outsystem state.global variables.chan2 := E uncommented

-- 11may because chan2 must be clear for mach 2 to transmit

when (rcv_DS2) =>
out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHAN2;
out_system_state. GLOBAL_VARIABLES.CHAN?2 :=E;

when (rcv_DATA2) =>

out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHANZ2;

--once m2 gets data it sends data to ml
out_system_state.machine2_state.out_buff2 := DATAIL;
out_system_state. GLOBAL_VARIABLES.CHAN?2 :=E;
out_system_state. GLOBAL_VARIABLES.CHAN1 := ACK];
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=1;

when (send_ACK2) =>
out_system_state. GLOBAL_VARIABLES.CHAN2:= ACK1;
out_system_state. GLOBAL_VARIABLES.CHAN1 DA :=1;

70

when (quiet2) => -- go to state 7

out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHAN2;

-- this next action artificially clears machine 2 Channel

-- since normally the receiving machine would clear its own

-- channel. Artificial since 2 is not receiving the message

-- This is the only way 2 can ever transiton to state 8 & 9.

out_system_state. GLOBAL_VARIABLES.CHAN? :=E;

when (wfcontend2) =>
out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHAN2;
-- see comments for quiet2
out_system_state. GLOBAL_VARIABLES.CHAN?2 :=E;

when (contend2) =>
out_system_state.machine2_state.in_buff2 :=
in_system_state. GLOBAL_VARIABLES.CHAN?2;
-- see comments for quiet2

out_system_state. GLOBAL_VARIABLES.CHAN?2 :=E;

1l

when (send_rrts2) =>
out_system_state. GLOBAL_VARIABLES.CHANTI := RRTS1;
out_system_state. GLOBAL_VARIABLES.CHANI1_DA :=1;

when (rcv_RRTS2) =>
out_system_state. GLOBAL_VARIABLES.CHANI :=RTS1;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=1;

--transitions for machine3

when (msgtosend3) => --this needs to be modified from the same asbelow
null;

when (timeout3) =>
out_system_state.machine3_state.in_buff3 := E;

when (send_RTS3) =>
out_system_state. GLOBAL_VARIABLES.CHANI1:= RTS4;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN4:= RTS4;
out_system_state. GLOBAL_VARIABLES.CHAN4_DA :=4;

71

when (rcv_CTS3) =>

out_system_state.machine3_state.in_buff3 :=
in_systemn_state. GLOBAL_VARIABLES.CHAN3;

out_system_state. GLOBAL_VARIABLES.CHAN3 := E;
out_system_state. GLOBAL_VARIABLES.CHANI := DS4;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN4 := DS4;
out_system_state. GLOBAL_VARIABLES.CHAN4_DA :=4;

when (snd_data3) =>
out_system_state. GLOBAL_VARIABLES.CHAN1:=
in_system_state.machine3_state.out_buff3;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN4:=
in_system_state.machine3_state.out_buff3;
out_system_state. GLOBAL_VARIABLES.CHAN4_DA :=4;

when (rcv_ACK3) =>
out_system_state.machine3_state.in_buff3 :=
in_system_state. GLOBAL_VARIABLES.CHAN3;
out_system_state. GLOBAL_VARIABLES.CHAN3:=E;
out_system_state.machine3_state.out_buff3 := E;

when (rcv_RTS3) => -- go to state 5
out_system_state.machine3_state.in_buff3 :=
in_system_state. GLOBAL_VARIABLES.CHAN3;

out_system_state. GLOBAL_VARIABLES.CHANT1 := CTS4;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN4 := CTS4;
out_system_state. GLOBAL_VARIABLES.CHAN4_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN3 :=E;

when (rcv_DS3) =>
out_system_state.machine3_state.in_buff3 :=
in_system_state. GLOBAL_VARIABLES.CHAN3;
out_system_state. GLOBAL_VARIABLES.CHAN3 :=E;

when (rcv_DATA3) =>
out_system_state.machine3_state.in_buff3 :=

72

in_system_state. GLOBAL_VARIABLES.CHAN3;
out_system_state. GLOBAL_VARIABLES.CHAN3 :=E;
out_system_state. GLOBAL_VARIABLES.CHANI1 := ACK4;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN4 := ACK4;
out_system_state. GLOBAL_VARIABLES.CHAN4_DA :=4;

when (send_ACK3) =>
out_system_state. GLOBAL_VARIABLES.CHAN1:= ACK4;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN4:= ACK4;
out_system_state. GLOBAL_VARIABLES.CHAN4_DA :=4;
out_system_state.machine3_state.out_buff3 := E;

when (quiet3) => -- go to state 7
out_system_state.machine3_state.in_buff3 :=
in_system_state. GLOBAL_VARIABLES.CHAN?3;

when (wfcontend3) =>
out_system_state.machine3_state.in_buff3 :=
in_system_state. GLOBAL_VARIABLES.CHANS3;

when (contend3) =>
out_system_state.machine3_state.in_buff3 :=
in_system_state. GLOBAL_VARIABLES.CHANS;

when (send_rrts3) =>
out_system_state. GLOBAL_VARIABLES.CHANI1 := RRTS4;
out_system_state. GLOBAL_VARIABLES.CHAN1_DA :=4;
out_system_state. GLOBAL_VARIABLES.CHAN4 := RRTS4;
out_system_state. GLOBAL_VARIABLES.CHAN4_DA :=4;

--transitions for machine 4

when (msgtosend4) =>
null;

when (timeout4) =>
-- out_system_state. GLOBAL_VARIABLES.CHAN3:=E;
out_system_state.machine4_state.in_buff4 := E;

when (send_RTS4) =>
out_system_state. GLOBAL_VARIABLES.CHAN3:= RTS3;

73

out_system_state. GLOBAL_VARIABLES.CHAN3_DA :=3;

out_system_state. GLOBAL_VARIABLES.CHAN2:= RTS3;
out_system_state. GLOBAL_VARIABLES.CHAN2_DA :=3;

when (rcv_CTS4) =>
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4;
out_system_state. GLOBAL_VARIABLES.CHAN4 :=E;
out_system_state. GLOBAL_VARIABLES.CHAN3 := DS3;
out_system_state. GLOBAL_VARIABLES.CHAN3_DA :=3;

when (snd_datad) =>
out_system_state. GLOBAL_VARIABLES.CHAN3:=
in_system_state.machine4_state.out_buff4;
out_system_state. GLOBAL_VARIABLES.CHAN3_DA :=4;

when (rcv_ACK4) =>
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4,
out_system_state. GLOBAL_VARIABLES.CHAN4:=E;
out_system_state.machine4_state.out_buff4 := E;

when (rcv_RTS4) => -- go to state 5
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4;
out_system_state. GLOBAL_VARIABLES.CHAN3 := CTS3;
out_system_state. GLOBAL_VARIABLES.CHAN3_DA :=3;
out_system_state. GLOBAL_VARIABLES.CHAN4 :=E;

when (rcv_DS4) =>
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4;
out_system_state. GLOBAL_VARIABLES.CHAN4 :=E;

when (rcv_DATA4) =>
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4;
out_system_state. GLOBAL_VARIABLES.CHAN4 :=E;
out_system_state. GLOBAL_VARIABLES.CHAN3 := ACK3;
out_system_state. GLOBAL_VARIABLES.CHAN3_DA :=3;

74

when (send_ACK4) =>
out_system_state. GLOBAL_VARIABLES.CHAN3:= ACK3;
out_system_state. GLOBAL_VARIABLES.CHAN3_DA :=3;

when (quiet4) => -- go to state 7
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4;
out_system_state. GLOBAL_VARIABLES.CHAN4 :=E;

when (wfcontend4) =>
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4;
out_system_state. GLOBAL_VARIABLES.CHAN4 :=E;

when (contend4) =>
out_system_state.machine4_state.in_buff4 :=
in_system_state. GLOBAL_VARIABLES.CHAN4;
out_system_state. GLOBAL_VARIABLES.CHAN4 :=E;

when (send_rrts4) =>
out_system_state. GLOBAL_VARIABLES.CHAN3 := RRTS4;
out_system_state. GLOBAL_VARIABLES.CHAN3_DA :=3;

when others =>
put_line(“There is an error in the Action procedure”);
end case;
end Action;

75

separate (main)
procedure output Gtuple(tuple : in out Gstate_record_type) is
begin
if print_header then

new_line(2);

set_col(5);
put_line(“ m1(in_buff1,out_buffl),m2(in_buff2,out_buff2),m3(in_buff3,out_buff3),

(CHAN1,CHAN2,CHAN3)”);
print_header := false;

else

put(* [“ & integer’image(tuple.machine_state(1)));
put(“ 143
buff_enum_io.put(tuple.machinel_state.in_buff1);
put(“ 6‘)

buff_enum_io.put(tuple.machinel_state.out_buff1);

put(“,” & integer’image(tuple.machine_state(2)));

put(“ “)

buff _enum_io.put(tuple.machine2_state.in_buff2);

put(“ (‘)
buff_enum_io.put(tuple.machine?_state.out_buff2);

put(“ “)

put(integer’image(tuple.machine_state(3)));

put(“ “)
buff_enum_io.put(tuple.machine3_state.in_buff3);

put(“ “)
buff_enum_io.put(tuple.machine3_state.out_buff3);

put(“ (‘)

buff_enum_io.put(tuple. GLOBAL_VARIABLES.CHAN1);
put(“ “)

buff_enum_io.put(tuple. GLOBAL_VARIABLES.CHAN?2);
put(“ “)

buff_enum_io.put(tuple. GLOBAL_VARIABLES.CHAN3);
put(“],’);

end if;

end output_Gtuple;

76

The following three pages are the input files used to anlayze two, three and four

machne configurations.

One Machine input file:

state 7

trans wfcontendl 8
trans timeoutl 0
state 8

trans quietl 7
trans contendl 9
state 9

trans send_rrtsl O
machine 2

state 0

trans msgtosend2 1
trans rcv_RTS2 5
trans rcv_RRTS2 2
trans send_ACK2 0
trans quiet2 7

state 1

trans send_RTS2 2
trans rcv_RTS2 5
trans quiet2 7

state 2

trans rcv_CTS2 3
trans timeout2 O
trans rcv_ACK2 0
trans quiet2 7

state 3

trans snd_data2 4
state 4

trans rcv_ACK2 0
trans timeout2 0
trans quiet2 7

state 5

trans rcv_DS2 6
trans timeout2 0
trans quiet2 7

state 6

trans rcv_DATA2 0
trans timeout2 0

77

trans quiet2 7
state 7

trans wfcontend?2 §
trans timeout2 0
state 8

trans quiet2 7
trans contend2 9
state 9

trans send_rrts2 O
initial_state 0 O
finish

78

Three machine input file:

start

number_of machines 3
machine 1

state 0

trans msgtosend1 1
trans rcv_RTS1 5
trans rcv_RRTS1 2
trans send_ACK1 0
trans quietl 7

state 1

trans send_RTS1 2
trans rcv_RTS1 5
trans quietl 7

state 2

trans rcv_CTS1 3
trans quietl 7

trans rcv_ACK1 0
trans timeoutl 0
state 3

trans snd_datal 4
state 4

trans rcv_ACK1 0
trans timeoutl 0
trans quietl 7

state 5

trans rcv_DS1 6
trans timeoutl 0
trans quietl 7

state 6

trans rcv_DATA1 0O
trans timeout] 0
trans quietl 7

state 7

trans wfcontend] §
trans timeoutl 0
state 8

trans quietl 7

trans contendl 9
state 9

trans send_rrts1 O
machine 2

79

state 0

trans msgtosend?2 1
“trans rcv_RTS2 5

trans rcv_RRTS2 2

trans send_ACK2 0

trans quiet2 7

state 1

trans send_RTS2 2

trans rcv_RTS2 5

trans quiet2 7

state 2

trans rcv_CTS2 3

trans timeout2 0

trans rcv_ACK2 0

trans quiet2 7

state 3

trans snd_data2 4

state 4

trans rcv_ACK2 0

trans timeout2 0

trans quiet2 7

state 5

trans rcv_DS2 6

trans timeout2 0

trans quiet2 7

state 6

trans rcv_DATA2 0

trans timeout2 (

trans quiet2 7

state 7

trans wfcontend?2 §

trans timeout2 0

state 8

trans quiet2 7

trans contend2 9

state 9

trans send_rrts2 0

machine 3

state (

trans msgtosend3 1

trans rcv_RTS3 5

trans rcv_RRTS3 2

trans quiet3 7

80

state 1

trans send_RTS3 2
trans rcv_RTS3 5
state 2

trans rcv_CTS3 3
trans timeout3 0
state 3

trans snd_data3 4
state 4

trans rcv_ACK3 0
trans timeout3 0
state 5

trans rcv_DS3 6
trans timeout3 0
state 6

trans rcv_DATA3 0
trans timeout3 0
state 7

trans wfcontend3 8
trans timeout3 0
state 8

trans quiet3 7
trans contend3 9
state 9

trans send_rrts3 0
initial_state 0 7 0
finish

81

Four Machine input file:

start

number_of machines 4
machine 1

state 0

trans msgtosend] 1
trans rcv_RTS1 5
trans rcv_RRTS1 2
trans send_ACK1 0
trans quietl 7

state 1

trans send_RTS1 2
trans rcv_RRTS1 2
trans rcv_RTS1 5
trans quietl 7

state 2

trans rcv_CTS1 3
trans quietl 7

trans rcv_ACK1 0
trans timeoutl 0
state 3

trans snd_datal 4
state 4

trans rcv_ACK1 0
trans timeoutl 0
trans quietl 7

state 5

trans rcv_DS1 6
trans timeoutl O
trans quietl 7

state 6

trans rcv_DATA1 0
trans timeoutl 0
trans quietl 7

state 7

trans wfcontend1 8
trans timeoutl 0
state 8

trans quiet1 7

trans contend1 9
state 9

82

trans send_rrts1 O
machine 2

state 0

trans msgtosend?2 1
trans rcv_RTS2 5
trans rcv_RRTS2 2
trans send_ACK2 0
trans quiet2 7

state 1

trans send_RTS2 2
trans rcv_RRTS2 2
trans rcv_RTS2 5
trans quiet2 7

state 2

trans rcv_CTS2 3
trans timeout2 0
trans rcv_ACK2 0
trans quiet2 7

state 3

trans snd_data2 4
state 4

trans rcv_ACK2 0
trans timeout2 0
trans quiet2 7

state 5

trans rcv_DS2 6
trans timeout2 0
trans quiet2 7

state 6

trans rcv_DATA2 0
trans timeout2 0
trans quiet2 7

state 7

trans wfcontend2 8
trans timeout2 0
state 8

trans quiet2 7

trans contend2 9
state 9

trans send_rrts2 0
machine 3

state 0

trans msgtosend3 1

&3

trans rcv_RTS3 5
trans rcv_RRTS3 2
trans quiet3 7

state 1

trans send_RTS3 2
transrcv_RTS3 5
state 2

trans rcv_CTS3 3
trans timeout3 (
state 3

trans snd_data3 4
state 4

trans rcv_ACK3 0
trans timeout3 0
state 5

trans rcv_DS3 6
trans timeout3 0
state 6

trans rcv_DATA3 0
trans timeout3 0
state 7

trans wfcontend3 8
trans timeout3 0
state 8

trans quiet3 7

trans contend3 9
state 9

trans send_r1rts3 0
machine 4

state 0

trans msgtosend4 1
trans rcv_RTS4 5
trans rcv_RRTS4 2
trans quiet4 7

state 1

trans send_RTS4 2
trans rcv_RTS4 5
state 2

trans rcv_CTS4 3
trans timeout4 O
state 3

trans snd_data4 4
state 4

84

trans rcv_ACK4 0
trans timeout4 0
state 5

trans rcv_DS4 6
trans timeout4 0
state 6

trans rcv_DATA4 0
trans timeout4 0
state 7

trans wfcontend4 8
trans timeout4 0
state 8

trans quiet4 7
trans contend4 9
state 9

trans send_rrts4 0
initial_state 00 0 0
finish

85

86

INITIAL DISTRIBUTION LIST

. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

. Dudley Knox Library

Code 013

Naval Postgraduate School
Monterey, CA 93943-5002

. Director, Training and Education
MCCDC, Code C46

1019 Elliot Rd.

Quantico, Virginia 22134-5027

. Chairman, Code CS

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

. Dr Gilbert Lundy, Code CS/LN
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

. Lou Stevens,Code CS/ST
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

&7

